线性代数基础复习笔记

本文是线性代数课程学习笔记,涵盖行列式、矩阵等内容。介绍了三阶行列式计算方法、行列式性质及三角行列式特点,阐述矩阵的运算、转置、特殊矩阵,还提及逆矩阵定义、求法及伴随矩阵,最后说明利用矩阵解线性方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数课程学习笔记

2行列式

三阶行列式

在这里插入图片描述
在这里插入图片描述
实线是主对角线,虚线是辅对角线

主对角线以及所有与主对角线走向相同线上的三个数乘积之和减去辅对角线以及所有与辅对角线走向相同线上的三个数乘积的和

即:三阶行列式=a11a22a33+a12a23a31+a13a32a21
-(a13a22a31+a12a21a33+a11a32a23)

3行列式的性质

行列式的性质

1.交换任意两行(两列),新的行列式等于原来行列式的相反数
2.若有两行或者两列成比例,则行列式为零!!!!
3.把行列式一行(列)的若干倍加到另一行(列),行列式值不变!
4.一个数乘以行列式的一行或者一列,等于此数乘以该行列式。

三角行列式

主对角线下方都为零就是上三角形行列式,上方为零就是下三角形行列式。统称三角形行列式。我们以上三角形行列式为例说明问题

5.上(下)三角形行列式都等于主对角线所有元素乘积!
6.可以把任意行列式归结为三角形行列式!

4代数余子式

代数余子式求行列式

5矩阵

行列式表示数,矩阵是一个列表
两行两列矩阵也叫二阶方程

1,矩阵加法和减法
在这里插入图片描述
矩阵加法或者减法就是对相应元素相加或者相减

2,数乘矩阵
在这里插入图片描述

3.矩阵乘法
在这里插入图片描述
必须行数相同才能相乘

具体怎么乘:
在这里插入图片描述

矩阵乘法中,AB与BA之间可不能随意划等号哦,完全两回事

6矩阵的转置和特殊矩阵

1,对角矩阵

在这里插入图片描述

2.单位矩阵

在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。

它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。

2.在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。

3,矩阵的转置

在这里插入图片描述
矩阵转置的性质
3.1转置矩阵的转置矩阵为原矩阵
在这里插入图片描述
3.2矩阵和的转置矩阵等于矩阵转置矩阵的和在这里插入图片描述

3.3矩阵乘以一个常数的转置矩阵,等于该常数乘以原矩阵的转置矩阵
在这里插入图片描述

3.4
在这里插入图片描述
记住这个性质里,如果是先转置再乘,顺序要变。

7逆矩阵

矩阵可以简洁表示物质间的关联,
逆矩阵可以解决数理统计啊,线性规划啊,物理中的几何光学,电子学中很多问题

矩阵的初等行变换

在这里插入图片描述

逆矩阵定义

求逆矩阵

在这里插入图片描述
在这里插入图片描述

不是所有的矩阵都有逆矩阵

伴随矩阵

在这里插入图片描述
伴随矩阵的例子
在这里插入图片描述

8利用矩阵解线性方程

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值