目录
由于原文公式较多,所以本文部分内容以截图的形式分享给大家,电子版文档和相关代码可以通过下面的连接下载:
本文分别分析小斜视角和一般大斜视角情况下的SAR信号模型。
本文信号模型使用的数学符号与《SAR成像处理——算法与实现》一致。
小斜视角信号模型性质分析
距离多普勒域频谱
绘制上图的matlab代码如下所示。
%% 距离向脉冲压缩
Kr = bandWidth/pulseWidth;
fr = [0:Nr/2-1, -Nr/2:-1]/Nr*sampleRate;
Hr = exp(j*pi/Kr*fr.^2);
for ii = 1:Na
sig1 = sig_echo(ii, :);
sig_echo(ii, :) = ifft(fft(sig1).*Hr);
end
maxVal = max(max(abs(sig_echo)));
sig_image = 255 - abs(sig_echo)/maxVal*255;
figure, imagesc(sig_image)
colormap(gray); grid on;
%%
sig_fft = fftshift(fft(sig_echo, [], 1), 1);
maxVal = max(max(abs(sig_fft)));
sig_image = 255 - abs(sig_fft)/maxVal*255;
figure, imagesc(sig_image)
colormap(gray); grid on;
在运行代码时,应该首先使用本专栏发表的博文生成回波数据。
二维频谱
一般情况信号模型性质分析
当波束斜视角较大或天线波束孔径比较宽时,距离和方位之间的交叉耦合使得计算信号频谱十分困难,为了得到信号距离多普勒域频谱和二维频谱,可按照下面的顺序进行:
距离向傅里叶变换
方位向傅里叶变换
距离向傅里叶逆变换
小结
- 在小斜视角情况下,信号的距离历程表达式比较简单,可以直接使用驻定相位原理计算信号频谱;
- 在斜视角较大的情况下,如果直接对原始数据 进行方位向傅里叶变换,也能得到上面距离多普勒域的信号表达式,但是计算过程非常复杂,所以本文先将信号变换到二维频域,在做方位向逆傅里叶变换,最终得到距离里多普勒域信号;
- 本文对信号频谱的推导过程,是后续RD、CS、wk等频域算法的基础
本博客上传的所有原创类资料,仅可用于个人学习、交流等非商业性用途。未经作者同意,不可用于任何商业用途。
如在文献、报告等文字材料中引用本博客发布的原创类资料,请注明出处。