文章编号:CSDN_0012_20221029_braag反射
使用雷达对海洋场景进行观测时,海水的节点性质会影响雷达波的穿透深度。在SAR常使用的波段上,雷达波的能量衰减值海水表面处能量的1/e时,海水穿透深度仅为0.1mm~10cm(怎样计算?),远小于干燥陆地的穿透深度,所以海洋微波遥感的后向散射主要发生在海面处,即海面状况对SAR图像有着重要的影响。
在平静无风的理想情况下,雷达波在海面处仅发生镜面发射,而SAR主要工作在侧视模式下,因此无法接受海面发射的雷达回波。在实际情况下,在洋流、海风、短重力波等因素的影响下会变得比较粗糙,此时可以认为海面上有很多可以向不同方向发射雷达波的小反射面。对于海面而言,即使在最粗糙的情况下也不会产生相对水平面倾斜20度以上的倾斜面,所以,镜面发射只能发生在比较小的入射角情况下(通常在15度以内)。然而,SAR的观测角通常为20°~70° ,传感器只能通过海面的散射接收回波信号,回波信号的强度与海面粗糙度和观测角度等有关。
海面粗糙度对SAR图像有重要影响。海面比较光滑时,雷达波在海面处主要发生类似镜面的反射效应,基本上没有后向散射,SAR传感器接收的能量极少,SAR图像比较暗;海面中等粗糙时,雷达波在海面处同时发生反射效应和散射效应,SAR传感器接收的能量增加;海面粗糙程度进步不加剧时,散射方向图继续展宽,SAR传感器接收的能量也随之增加。综上所示,一般情况下,雷达波的后向散射与海面粗糙度成正比,下图给出了不同粗糙度海面下的散射方向图[1]。
定量描述海面粗糙度的方法有二分法和三分法。基于Rayleigh判据,二分法[朗, 陈, 春, et al. 陆地和海面的雷达反射特性[M]. 国防工业出版社, 1983.]认为 时为光滑海面,反之则为粗糙海面,其中, 为海面的有效波高, 为雷达入射角, 为雷达波长。三分法认为 时为光滑海面, 时为粗糙平面,否则为中等粗糙平面。
SAR的观测角通常为20°~70° ,使用Bragg散射模型能够比较准确的描述SAR回波的散射过程。所谓的Bragg共振散射,是指雷达波在海面发射散射后,其回波中的各种分量在远场区相干叠加,从而产生的增强了某个特定尺度的具有周期性结构的散射,并且减弱了其他周期性结构散射的现象。下图展示了Bragg共振散射模型原理图,当粗糙海面波长λs、雷达入射波波长λ和雷达入射角θ满足关系式2.8时,两处回波信号的相位差是2π,后向散射电磁波的相位相同,两处回波信号的同相相加增强了该周期性结构的散射,故而产生Bragg共振。
根据Bragg散射理论,由Bragg共振散射产生的NRCS在一阶近似时可以表示为[19]:
其中, 是雷达波数, 是与极化方式有关的调制权重, 是海水复介电常数, 是极坐标下海面波浪的波数谱, 是Bragg波(与雷达波产生Bragg共振的海面波浪)波数,θ 为雷达入射角,φ 是相对风向角,下标HH与VV表示雷达发射和接收信号的极化方式。从上述公式中可以看出,海面NRCS与雷达入射角和雷达波束的方位角有关,这两个参数是海面风速反演的重要变量。
本博客上传的所有原创类资料,仅可用于个人学习、交流等非商业性用途。未经作者同意,不可用于任何商业用途。
如在文献、报告等文字材料中引用本博客发布的原创类资料,请注明出处。