李宏毅2022ML第五周课程笔记

目录

李宏毅机器学习第五周—sequence to sequence

应用

Syntactic Parsing(语法分析)

Multi-label Classification(多标签分类)

Object Detection(目标检测)

Seq2Seq结构

1.encoder

为什么在Self-attention和Fully Connected Layer之后都有一个“Add & Norm”单元?

2.decoder

AT(前一时刻的输出,作为下一时刻的输入)

decoder 和 encoder对比:

NAT(一次可以处理整个句子,并行化处理)

Training

         目标函数:

         Tips:


李宏毅机器学习第五周—sequence to sequence

        Seq2seq 模型应用广泛,尤其是在自然语言处理任务中,例如:语音识别,语音生成,语音翻译,聊天机器人等等还可以用来解决QA任务。

应用

Syntactic Parsing(语法分析)

将句子通过树的形式转化为序列。

Multi-label Classification(多标签分类)

Multi-class classification  一个物品可以有多个标签

Multi-label classification  一个物品一个标签,多个物品分类

Object Detection(目标检测)

Seq2Seq结构

1.encoder

N 个 Blocks,每个Block都是由Self-attention和Fully Connected Layer。

为什么在Self-attention和Fully Connected Layer之后都有一个“Add & Norm”单元?

         Add :加上输入向量自身,可以理解为residual结构,Norm为Layer Normalization(对同一sample的不同维度做归一化),不同于Batch normalization批标准化(对不同sample的同一维度做归一化)

对于 Self-attention,不同的输入的句子长度不同。当输入句子长度变化大时,不同batch求得的均值方差抖动大。而且,如果测试时遇到一个很长的句子,对整体训练效果会造成比较大的影响。而Layer Normalization是在每个sample上做归一化,不受句子长度变化的影响。

2.decoder

Autoregressive (AT) 和 Non-autoregressive (NAT)

AT(前一时刻的输出,作为下一时刻的输入)

decoder 和 encoder对比:

         多了一层Attention的残差结构,最后多接了一个全连接和softmax层,同时在attention层增加了Masked机制。

在Masked Self-attention中,输入vector的query只与它之前vectors的(key, value)做运算。

NAT(一次可以处理整个句子,并行化处理)

        NAT可以调节输出sequence长度。比如在语音合成 (TTS)任务中,按前面提到的方法一,把encoder的输出送入一个Classifier,预测decoder输出sequence长度。通过改变这个 Classifier预测的长度,可以调整生成语音的语速。

        用decoder中self attention层的输出vector生成q,与由encoder最后一层输出sequence产生的k,v做运算,如下图所示:

Training

         目标函数:

        cross entropy

         Tips:

         1. Copy Mechnism:直接复制输入

         2.Guided Attention:指导其训练方向

         3. Beam Search:寻找最优路径(需要任务有明确答案)

         4. Optimizing Evaluation Metrics(BLEU score为两个句子间的相似程度,可以参考,但不能作为目标函数)

         5. exposure bias:训练数据可以加入噪声干扰等,锻炼其泛用性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想的小鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值