李宏毅2022《机器学习/深度学习》——学习笔记(1)

机器学习基本概念

机器学习不同的任务

Regression

连续
The function outputs a scalar.
在这里插入图片描述

Classification

离散
Given options(classes), the function outputs the correct one.
在这里插入图片描述

Structured Learning

Training的三个步骤

step 1. Function

function with unknown parameters

带有未知参数的函数

Model: function with unknown parameters

模型就是带有未知参数的函数

如下所示是一个简单的 Model
y = b + w x 1 y = b+wx_1 y=b+wx1

feature: x1 (已知数据)
weight: w(权重:与 feature 相乘的)
bias: b(偏置)

step 2. Loss

define loss from training data

从训练数据定义损失

  • Loss is a function of parameters L ( b , w ) L(b,w) L(b,w) —— Loss 是带有未知参数的函数
  • Loss 的值:how good a set of values is. —— Loss的值代表当确定一组未知参数时,模型是好还是不好。

Loss: L = 1 N ∑ n e n L=\frac{1}{N}\sum^ne_n L=N1nen
其中 e = ∣ y − y ^ ∣ e=|y-\hat{y}| e=yy^

step 3. Optimization

优化下面函数,获得较好的参数值
w ∗ , b ∗ = arg ⁡ min ⁡ w , b   L w^*,b^*=\arg{ \underset{w,b} {\min} \,L} w,b=argw,bminL

hyperparameters:机器学习中自己设定的参数,比如学习速率。

参考资料

(强推)李宏毅2021/2022春机器学习课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dotJunz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值