python:Dataframe字符串合并的高效方法(一文详解)
1.摘要
Dataframe的字符串合并包括2种场景,1.合并df中其中几列字符串;2.将df中的字符串与外部字符串合并。
本文主要介绍在Python下对Dataframe进行 字符串合并 操作的方法。首先,总结了实现上述功能主要的几种方法:1.使用Lambda函数和apply函数的组合(推荐第1种方法:代码简洁、灵活、逻辑清晰),2.使用apply函数,3.使用applymap函数,4.直接对列进行字符串拼接;接着,依次对每种方法以具体例子进行讲解,包括输入、处理、输出,只管感受效果。。
2.讲解2个场景的解决方案
2.1 对于场景1:合并df中其中几列字符串的场景,有以下2种方案。
"""df样例:"""
import pandas as pd
df = pd.DataFrame({
'id': [1, 2, 3, 4],
'name': ['Alice', 'Bob', 'Charlie', 'David']})
"""方法1:使用Lambda函数和apply函数的组合"""
df['combined1'] = df.apply(lambda row: f"序号:{row['id']},姓名: {row['name']}", axis=1)
"""方法4:直接对列进行字符串拼接"""
df['combined2'] = "序号:" + df['id'].astype(str) + ",姓名:" + df['name'].astype(str)
#输出:
0 序号:1,姓名: Alice
1 序号:2,姓名: Bob
2 序号:3,姓名: Charlie
3 序号:4,姓名: David
2.2 对于场景2:将df中的字符串与外部字符串合并,有以下4种方案:
"""df样例:"""
import pandas as pd
df = pd.DataFrame({
'id': [1, 2, 3, 4],
'name': ['Alice', 'Bob', 'Charlie', 'David']})
"""方法1:使用Lambda函数和apply函数的组合"""
df['combined1'] = df.apply(lambda row: f"你好,{row['name']},今天吃了吗", axis=1)
"""方法2:使用apply函数"""
df['combined2'] = df['name'].apply(lambda x: "你好," + str(x) + ",今天吃了吗")
"""方法3:使用applymap函数"""
df['new_id'] = df.applymap(lambda x: "aaaa" + str(x) + "bbb")['id']
"""方法4:直接对列进行字符串拼接"""
def merge_strings(name):
return "你好," + str(name) + ",今天吃了吗"
df['new_id'] = df['name'].apply(merge_strings)
#输出:
0 你好,Alice,今天吃了吗
1 你好,Bob,今天吃了吗
2 你好,Charlie,今天吃了吗
3 你好,David,今天吃了吗
3.总结方法
总的来说,python进行字符串的合并有以下4种方法。
方法1:使用Lambda函数和apply函数的组合:强烈推荐,代码简洁,逻辑清晰
Lambda函数是一种简洁的定义函数的方式。结合apply函数,我们可以更加简洁地定义进行字符串操作。
"""df样例:"""
import pandas as pd
df = pd.DataFrame({
'id': [1, 2, 3, 4],
'name': ['Alice', 'Bob', 'Charlie', 'David']})
"""合并df中其中几列字符串的场景"""
df['combined1'] = df.apply(lambda row: f"序号:{row['id']},姓名: {row['name']}", axis=1)
#输出:
0 序号:1,姓名: Alice
1 序号:2,姓名: Bob
2 序号:3,姓名: Charlie
3 序号:4,姓名: David
"""将df中的字符串与外部字符串合并"""
df['combined1'] = df.apply(lambda row: f"你好,{row['name']},今天吃了吗", axis=1)
#输出:
0 你好,Alice,今天吃了吗
1 你好,Bob,今天吃了吗
2 你好,Charlie,今天吃了吗
3 你好,David,今天吃了吗
方法2:使用apply函数
"""df样例:"""
import pandas as pd
df = pd.DataFrame({
'id': [1, 2, 3, 4],
'name': ['Alice', 'Bob', 'Charlie', 'David']})
"""将df中的字符串与外部字符串合并"""
def merge_strings(name):
return "你好," + str(name) + ",今天吃了吗"
df['new_id'] = df['name'].apply(merge_strings)
#输出:
0 你好,Alice,今天吃了吗
1 你好,Bob,今天吃了吗
2 你好,Charlie,今天吃了吗
3 你好,David,今天吃了吗
#输出:
0 你好,Alice,今天吃了吗
1 你好,Bob,今天吃了吗
2 你好,Charlie,今天吃了吗
3 你好,David,今天吃了吗
apply
函数可以对DataFrame中的每一行应用一个函数。在这个方法中,需要先定义一个作用于df的函数。
方法3:使用applymap函数
applymap函数可以对DataFrame中的每个元素应用一个自定义的函数。通过使用applymap函数,我们可以实现ID列与名称列的合并。
"""将df中的字符串与外部字符串合并"""
df['new_id'] = df.applymap(lambda x: "aaaa" + str(x) + "bbb")['id']
#输出:
0 你好,Alice,今天吃了吗
1 你好,Bob,今天吃了吗
2 你好,Charlie,今天吃了吗
3 你好,David,今天吃了吗
方法4:直接对列进行字符串拼接
"""合并df中其中几列字符串的场景"""
df['combined2'] = "序号:" + df['id'].astype(str) + ",姓名:" + df['name'].astype(str)
#输出:
0 序号:1,姓名: Alice
1 序号:2,姓名: Bob
2 序号:3,姓名: Charlie
3 序号:4,姓名: David
以上就是几种在Pandas中对DataFrame中的id列进行字符串合并的方法。每种方法都有其适用场景,您可以根据具体需求选择最适合的方法。