大模型部署手记(14)Chinese-LLaMA-Alpaca-2+Ubuntu+vLLM

1.简介:

组织机构:Meta(Facebook)

代码仓:https://github.com/facebookresearch/llama  https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

模型:chinese-alpaca-2-7b-hf

下载:使用百度网盘下载

硬件环境:暗影精灵7Plus

Ubuntu版本:18.04

内存 32G

GPU显卡:Nvidia GTX 3080 Laptop (16G)

2.代码和模型下载

chinese-alpaca-2-7b-hf的模型从官网下载:

百度网盘 请输入提取码

将chinese-alpaca-2-7b-hf的模型传到 ~/models目录下:

3.安装依赖

conda create -n vllm310 python=3.10 -y

conda activate vllm310

pip install chardet

pip install vllm

4.部署验证

准备脚本:

cd ~/vllm

vi test_vllm.py

# 导入 vLLM 所需的库

from vllm import LLM, SamplingParams

# 定义输入提示的列表,这些提示会被用来生成文本

prompts = [

"[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n [/INST] 你好,我叫",

"[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n [/INST] 意大利国的总统是",

"[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n [/INST] 尼日利亚的首都是",

"[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n [/INST] 人工智能的未来是",

]

# 定义采样参数,temperature 控制生成文本的多样性,top_p 控制核心采样的概率
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=512)


# 初始化 vLLM 的离线推理引擎,这里选择的是 "/root/chinese-llama2" 模型
llm = LLM(model="/home/zhanghui/models/chinese-alpaca-2-7b-hf")

# 使用 llm.generate 方法生成输出文本。
# 这会将输入提示加入 vLLM 引擎的等待队列,并执行引擎以高效地生成输出
outputs = llm.generate(prompts, sampling_params)

# 打印生成的文本输出
for output in outputs:
    prompt = output.prompt # 获取原始的输入提示
    generated_text = output.outputs[0].text # 从输出对象中获取生成的文本
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

运行脚本:

python test_vllm.py

运行成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小白TWO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值