在迅速发展的AI领域中,高效部署大型语言模型(LLM)对于许多应用程序至关重要。对于希望利用LLM力量的开发人员和组织来说,vLLM提供了一种简单、快速且经济高效的解决方案,用于在GPU上运行模型。本文将指导您完成vLLM的安装、在服务器上运行它以及将其集成到应用程序中的步骤。
为什么选择vLLM?
vLLM专为希望在其GPU上托管大型语言模型的人设计,这对于高吞吐量、并行处理和流式输出至关重要。无论您是在计算机上本地部署模型,还是在基于云的实例上部署,vLLM都提供了一个强大且可扩展的解决方案。
vLLM与Ollama:快速比较
vLLM主要专注于在GPU上运行大型语言模型,使其成为需要并行处理的高性能应用的理想选择。然而,它支持的模型范围有限。相比之下,Ollama则面向需要在CPU上构建和测试AI应用程序的开发人员。Ollama支持任何模型,为在CPU环境中工作的人提供了更大的灵活性。
要了解有关这些工具及其使用方法的更多信息,请参阅本文:Ollama vs vLLM
开始使用vLLM
让我们深入了解在系统上安装和运行vLLM的步骤。
先决条件
在开始之前,请确保您拥有一款支持高吞吐量处理的兼容GPU,例如NVIDIA RTX A6000、A100或V100。
第1步:安装vLLM
首先,您需要安装vLLM包。打开终端并执行以下命令:
pip install vllm
第2步:提供模型
安装VLLM后,您可以开始提供模型。在此示例中,我们将使用Qwen-7B-Chat模型。在终端中运行以下命令
vllm serve Qwen/Qwen-7B-Chat --trust-remote-code
此命令用于下载模型并启动服务器,使其可以通过本地URL(端口号为8000)访问。
将vLLM集成到您的应用程序中
一旦服务器启动并运行,将vLLM集成到您的应用程序中将变得非常简单。我们将使用OpenAI SDK与模型进行交互。
步骤3:设置客户端
在您的Python环境中,创建一个名为app.py的新文件。然后,添加以下代码以设置客户端并向vLLM服务器发出请求:
from openai import OpenAI`` ``client = OpenAI(` `base_url="http://localhost:8000/v1",` `api_key="key" # Replace with your actual API key if necessary``)``chat_completion = client.chat.completions.create(` `messages=[` `{` `"role": "user",` `"content": "Tell about Bitcoin .",` `}` `],` `model="Qwen/Qwen-7B-Chat",``)``print(chat_completion.choices[0].message.content)
该脚本向模型发送一个请求,要求提供一份餐计划。然后在终端中打印响应。
步骤4:使用POST请求
或者,你可以不使用OpenAI SDK直接向服务器发送POST请求。你可以使用Python的requests库来实现:
import requests``import json`` ``# Endpoint URL``url = "http://localhost:8000/v1/chat/completions"`` ``# Headers``headers = {` `"Content-Type": "application/json",``}``# Payload``payload = {` `"messages": [` `{"role": "system", "content": "You are a helpful assistant."},` `{"role": "user", "content": "Tell about Bitcoin."},` `],` `"model": "Qwen/Qwen-7B-Chat",` `"stream": False,` `"max_tokens": 2048,` `"stop": None,` `"frequency_penalty": 0,` `"presence_penalty": 0,` `"temperature": 0.6,` `"top_p": 0.90``}``# Make the request``response = requests.post(url, headers=headers, data=json.dumps(payload))``# Extracting 'content' value from response``result = response.json()``content = result['choices'][0]['message']['content']``print(content)
此方法对于偏好直接处理HTTP请求的开发人员非常有用。
结论
VLLM为在GPU上部署大规模语言模型提供了一种简化的途径,提供了现代AI应用所需的高吞吐量和性能。通过遵循上述步骤,您可以轻松地设置、运行并将其集成到您的项目中,从而实现符合您需求的强大AI功能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。