素数------有无穷多个素数(1)

  数学是一个庞大的学科,又可细分为很多的分支学科。而对素数的研究应该归在数论中。据说高斯(Gauss)(1777-1855)曾用下面的话表示他对数论的看法:“数学是科学的皇后,而数论是数学的皇后。”所以这里特意整理几篇跟素数相关的知识。


1.素数的定义

一个大于1的正整数 p ,它除了1和它本身外没有因子,就称它是素数。

一个自然数(除了0和1),如果不是素数,就是合数。

2.无穷多个素数

  当人们认识了什么是素数后,就产生了一个问题:究竟素数元素的个数是有限多个,还是无限多个?正确的结论是:有无穷多个素数。

证明一:欧几里得证法
  “素数有无穷多个”这个命题的证明,最初是由欧几里得(约公元前300年)用“反证法”给出的。证明过程如下:

  • 假设“只有有限多个素数”。这里不妨认为一共有n个素数,则采用下标法,这n个素数可以表示为:p1,p2,...,pn(按升序排列)。其他任何数(除了0和1)都是合数,于是,素数 p1,p2,...,pn 中至少有一个能够整除这些合数(根据”算术基本定律”:一个数 N 的素因子分解唯一)。现在我们构造一个数A=p1p2...pn+1(所有素数的乘积再加上1)。A比已知的任意素数 pi 都大,因而A必须是合数。但用 p1p2 等去除A总是余1,因此这些 pi 都不是A的因子,所以A是一个素数。从而导致矛盾。因此原假设只能被看成是荒谬的,从而原假设的反面必然是正确的,定理证毕。

    • 核心思想:假设存在最大的素数P,那么我们可以构造一个新的数2 * 3 * 5 * 7 * … * P + 1(所有的素数乘起来加1)。显然这个数不能被任一素数整除(所有素数除它都余1),这说明我们找到了一个更大的素数。


    • 证明二:构造法(和欧几里得法类似)

      • 假设“只有有限多个素数”。这里不妨认为一共有n个素数,则采用下标法,这n个素数可以表示为: p1,p2,...,pn (按升序排列)。再设Ar是其中任意取定的r个素数的乘积。只需证明任一 pj (1≤j≤n)都不能整除 p1...pn/Ar+Ar ; 由此推出素数有无穷多个。
      • 证明:因为 pj 若不是Ar的因子,必然是 p1...pn/Ar 的因子;或者, pj 若是Ar的因子,必然不是 p1...pn/Ar 的因子。因此, p1...pn/Ar+Ar 或者是素数,或者除 p1,p2,...,pn 之外有其它素因子。 无论何种情况,都说明素数不止有限个。假设错误,所以素数有无穷多个。

      证明三:级数法

      • 假设“只有有限多个素数”。这里不妨认为一共有n个素数,则采用下标法,这n个素数可以表示为: p1,p2,...,pn (按升序排列)。只需证明对任意正整数N必有

        k=1N1k<(11p1)1(11p2)1...(11pn)1

        因为级数 +k=11k 递增,趋于正无穷大。所以如果上式 Nk=11k<(11p1)1(11p2)1...(11pn)1 成立的话,可知:素数有无穷多个。(否则,上式右侧为常值)

      • 证明

        k=1N1k<(11p1)1(11p2)1...(11pn)1=(111p1)(111p2)...(111pn)=(1+1p1+1p21+1p31+...+1p+1)...(1+1pn+1p2n+1p3n+...+1p+n)=k=1+1k

        上式中最后一步, 将括号展开得到这个结果。因为任意正整数都可以表示成素数或素数的乘积。故上式成立。 命题得证。


      证明四:用Fermat数证明素数无穷多
        Fermat(费尔马)数是指形为 22n+1 的数,我们把 22n+1 记作 F(n) ,其中n可以取所有自然数。显然所有的Fermat数都是奇数。一会儿我们将看到任两个Fermat数都是互素的,也就是说,每一个Fermat数的每一个素因子都与其它Fermat数的素因子不同。这也就说明,素数个数有无穷多。

      引理1:F(0) * F(1) * F(2) * … * F(n-1) = F(n) – 2, n>=1
      
      • 证明:数学归纳法。F(0)=3且F(1)=5,那么k=1时显然成立。
        假设k=n成立,则当k=n+1时:
        F(0)F(1)F(2)F(n)=(F(0)F(1)F(2)F(n1))F(n)=(F(n)2)F(n)=(22n1)(22n+1)=22(n+1)1=F(n+1)2

      引理2:对任意两个不相等的自然数n和m,有F(n)和F(m)互素。
      
      • 证明:假设t同时整除F(n)和F(m), m<n 。根据引理1,有:
        F(n)=F(0)F(1)F(2)F(m)F(n1)+2
        这说明t可以整除
        (F(0)F(1)F(2)F(m)F(n1))F(n)=2
        注意到2只有两个因数1和2。前面说过Fermat数都是奇数,因此不可能被2整除。这样,t只能为1,这就证明了两个数F(n)和F(m)互素。

      证明五:用*-集合证明素数无穷多
        定义: 集合是一个正整数集合{a1, a2, … an},使得对所有不相等的i和j都有 aiaj 整除 ai

      引理1:对所有n>=2,都存在一个大小为n的*-集合。
      
      • 证明:数学归纳法。
        1. {1,2}显然是一个大小为2的 集合。
        2. 假设{a1, a2, … an}是一个 集合。定义b0为 a1a2an (即所有ai的乘积)。
          对所有不超过n的正整数k,令 bk=b0+ak ,那么{b0, b1, b2, …, bn}就是一个大小为n+1的 集。

      引理2:假设{a1, a2, … ,an}是一个*-集合。对所有不超过n的正整数i,定义fi=2^ai+1,那么f1, f2, …, fn两两互素。
      
      • 证明:显然fi都是奇数。假设fk和fm(fk>fm)可以被同一个素数p整除,那么p也只能是奇数。p可以整除fk-fm即 2am(2(akam)1) 。由于p是奇数,那么它只可能是整除 2akam1
        如果有s整除t,那么 2s1 整除 2t1 证明见下面链接 )。于是,根据 集合的定义, 2(akam)1 整除 2ak1 。那么p就可以整除 2ak1 。但p也能整除 2ak+1 ,于是我们得出p整除2,这与p为奇数矛盾。

        如果有s整除t,那么 2s1 整除 2t1 。证明过程请戳链接:若正整数s整除t,那么2^s-1整除2^t-1


      定理:素数有无穷多个
      
      • 证明:根据引理1和2,对任意大的n,都存在大小为n的集合,里面的数两两互素,即至少存在n个不同的素因子。这就说明了素数的个数可以任意多。

      总结:本篇博文整理了“素数有无穷多个”这个命题。证明方法来源于网络。证明方法还有很多,不能全部总结,实属憾事。希望见到更加独到的证明方式。

      转载请注明出处: http ://blog.csdn.net/so_geili/article/details/54428227

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值