基于智普AI进行大模型开发介绍

如果你和我一样是想自学AI开发,那么首先你需要知道找一个能提供免费API-Key的AI大模型,其中智普AI就提供了免费的api-key。

网址

智普AI的官网地址

进入官网后就是注册、登录。

申请API-KEY

申请API-KEY地址,进入后就是下面的界面

在这里插入图片描述
点击“添加新的API Key” 按钮,填入api key名称就会自动生成一个api key,点击复制就可以在你后期开发中使用了。

开发文档

智普提供了相关的开发文档可以进行查看。开发文档

案例

根据您之前申请的api key我们来个简单的python案例,只要能运行起来就证明我们申请的api key是有用的,且通讯正常


from zhipuai import ZhipuAI
client = ZhipuAI(api_key="5e........L4.....Kxlr") # 填写您自己的APIKey
response = client.chat.completions.create(
    model="glm-4-plus",  # 填写需要调用的模型编码
    messages=[
        {"role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},
        {"role": "user", "content": "农夫需要把狼、羊和白菜都带过河,但每次只能带一样物品,而且狼和羊不能单独相处,羊和白菜也不能单独相处,问农夫该如何过河。"}
    ],
)
print(response.choices[0].message)


输出结果:


CompletionMessage(content='这是一个经典的逻辑谜题,通常被称为“农夫过河问题”。为了确保狼、羊和白菜都能安全过河,农夫需要遵循以下步骤:\n\n1. **第一次过河**:\n   - 农夫带羊过河,把羊留在对岸。\n\n2. **第二次过河**:\n   - 农夫回到原岸,带狼过河。\n\n3. **第三次过河**:\n   - 农夫把羊带回原岸,确保狼和羊不会单独相处。\n\n4. **第四次过河**:\n   - 农夫带白菜过河,把白菜留在对岸,和狼在一起。\n\n5. **第五次过河**:\n   - 农夫回到原岸,最后带羊过河。\n\n通过以上步骤,农夫可以确保在任何时候狼和羊、羊和白菜都不会单独相处,从而安全地将所有物品带过河。\n\n具体步骤总结如下:\n1. 带羊过河。\n2. 回来带狼过河。\n3. 把羊带回原岸。\n4. 带白菜过河。\n5. 回来带羊过河。\n\n这样,农夫、狼、羊和白菜都安全地到达了对岸。', role='assistant', tool_calls=None)


在这里插入图片描述

<think>好的,用户现在希望根据提供的示例代码来编写调用智普API的代码。首先,我需要仔细分析用户提供的示例,确保理解其结构和关键点。 用户给出的示例代码使用了`zhipuai`库,初始化了客户端,并调用了`chat.completions.create`方法。响应结构包括`choices`数组,其中包含`message`的内容。用户提供的响应示例显示,成功响应后,需要从`response.choices[0].message`中获取内容。 接下来,我需要参考用户之前的历史提问。用户之前询问的是如何调用API翻译本地JSON文件,而现在的问题是关于生成营销口号的代码。虽然任务不同,但API调用方式可能有相似之处,比如构造请求体、处理响应等。 用户的需求可能不仅仅是复制示例代码,而是希望有一个完整的、可运行的脚本,同时可能需要错误处理、参数说明等。此外,用户可能希望代码结构清晰,有注释说明各部分的功能,以便于理解和修改。 我需要确保代码符合最新的智普API文档,特别是模型名称和参数是否正确。例如,示例中的模型是`glm-4-plus`,而之前可能使用的是`glm-4`,需要确认模型名称的准确性。 另外,用户提供的示例中有多轮对话消息,包括用户和助理的交替。因此,在构造`messages`列表时,需要保留这些对话历史,以便模型能理解上下文,生成更准确的口号。 错误处理方面,用户之前的代码示例中检查了`finish_reason`是否为`stop`,并处理了可能的错误。当前代码也需要类似的处理,比如检查响应是否包含`choices`,是否有错误信息返回,并添加`try-except`块来捕获请求异常。 参数化方面,用户可能需要灵活修改API密钥、模型名称、输入消息等,因此将这些作为变量或函数参数会更方便复用。 最后,用户可能希望代码有使用示例,说明如何调用函数并打印结果,以及如何处理可能的错误情况。同时,响应中的`usage`字段可以用来显示token消耗情况,帮助用户监控资源使用。 总结步骤: 1. 导入必要的库,如`zhipuai`。 2. 初始化客户端,使用用户的API密钥。 3. 构造包含多轮对话的`messages`列表。 4. 调用API并处理响应,提取生成的口号。 5. 添加错误处理,确保代码健壮性。 6. 提供使用示例,展示如何运行代码并输出结果。 7. 解释关键参数和扩展建议,帮助用户根据需求调整。 需要确保代码结构清晰,注释到位,并覆盖用户可能需要的功能点,如多轮对话、错误处理、参数配置等。同时,根据用户之前的提问,可能还需要说明如何调整代码以适应不同的任务,比如翻译与生成文本的区别。</think>以下是根据你提供的调用示例编写的 **智谱API调用代码模板**,包含 **完整参数说明** 和 **错误处理机制**: ```python from zhipuai import ZhipuAI def generate_slogan(api_key, product_info, max_retries=3): """
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值