基于遗传优化算法的TSP问题求解matlab仿真

本文详细描述了一种基于遗传优化算法解决旅行商问题(TSP)的MATLAB实现,涉及编码、初始种群生成、适应度函数、选择、交叉、变异和精英保留等关键步骤,展示了核心程序代码片段。
摘要由CSDN通过智能技术生成

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于遗传优化算法的TSP问题求解,分别对四个不同的城市坐标进行路径搜索。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

........................................................................
for ij=1:Miters
    % 计算当前迭代周期种群适应度   
      %删除与交叉区域相同元素
      for j=1:Rcc
          for k=1:num
              if Xnew(i,k)==Yc(j)
                 Xnew(i,k)=0;
                  for t=1:num-k
                      temp=Xnew(i,k+t-1);
                      Xnew(i,k+t-1)=Xnew(i,k+t);
                      Xnew(i,k+t)=temp;
                  end                 
              end
          end
      end
 
      %插入交叉区域
      for j=1:Rcc
          Xnew(i,num-Rcc+j)=Yc(j);
      end
      %判断产生新路径长度是否变短
      ydt=0;
      for j=1:num-1
          ydt=ydt+mdist(Xnew(i,j),Xnew(i,j+1));
      end
      ydt=ydt+mdist(Xnew(i,1),Xnew(i,num));
      if yfit(i)>ydt
         x(i,:)=Xnew(i,:);
      end
      %进行变异操作
      c1=round(rand*(num-1))+1;    
      c2=round(rand*(num-1))+1;
      temp=Xnew(i,c1);
      Xnew(i,c1)=Xnew(i,c2);
      Xnew(i,c2)=temp;
      %判断产生新路径长度是否变短
      ydt=0;
      for j=1:num-1
          ydt=ydt+mdist(Xnew(i,j),Xnew(i,j+1));
      end
      ydt=ydt+mdist(Xnew(i,1),Xnew(i,num));
 
      if yfit(i)>ydt
         x(i,:)=Xnew(i,:);
      end
    end

    yfit1=yfit(1);
    yfit2=1;
    for i=1:Pops
       if yfit1>=yfit(i)
            yfit1=yfit(i);
            yfit2=i;
        end
    end
    idx        = yfit2;
    L_best(ij) = min(yfit);
    %当前全局最优路径
    Ygbest     = x(idx,:);     
  
    if mod(ij,10)==1
        figure(1)
        subplot(121);
        scatter(pxy(:,1),pxy(:,2));
        hold on
        plot([pxy(Ygbest(1),1),pxy(Ygbest(num),1)],[pxy(Ygbest(1),2),pxy(Ygbest(num),2)],'-mo',...
            'LineWidth',1,...
            'MarkerSize',6,...
            'MarkerEdgeColor','k',...
            'MarkerFaceColor',[0.5,0.9,0.0]);
        for ii=2:num
            plot([pxy(Ygbest(ii-1),1),pxy(Ygbest(ii),1)],[pxy(Ygbest(ii-1),2),pxy(Ygbest(ii),2)],'-mo',...
            'LineWidth',1,...
            'MarkerSize',6,...
            'MarkerEdgeColor','k',...
            'MarkerFaceColor',[0.5,0.9,0.0]);
        end
        title(['最短路线:',num2str(min(yfit))]);
        hold off
        subplot(122);
        plot(L_best,'LineWidth',2);
    end
end
45

4.本算法原理

        旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题,旨在寻找最短的可能路线,使得旅行商能访问每个城市恰好一次然后返回起点。利用遗传算法(Genetic Algorithm, GA)解决TSP问题,主要通过模拟自然界的进化过程,在解空间中搜索最优解。

一、编码方式 首先需要将TSP问题转化为遗传算法可处理的形式。通常采用路径编码或顺序编码的方式,即将城市的访问顺序表示为一个染色体(个体),如对于n个城市,一个染色体可以用一个长度为n的整数数组表示 [c1, c2, ..., cn],其中 ci 表示第i个访问的城市编号(假设从1开始计数,且cn+1=c1表示回到起点)。

二、初始种群生成 随机生成一组代表不同路径的染色体构成初始种群,确保每个染色体都是一个合法的TSP解决方案,即包含所有城市且无重复。

三、适应度函数 设计适应度函数评价各个染色体的好坏,对于TSP问题,适应度函数通常是路径总距离的倒数或对数形式.

四、选择操作 根据适应度函数值对种群进行选择操作,保留适应度较高的个体进入下一代。常见的选择策略有轮盘赌选择、锦标赛选择等。

五、交叉(Crossover) 选取两个父代个体进行交叉操作,产生新的子代。针对TSP问题常用的是顺序交叉(Order Crossover, OX)或部分匹配交叉(Partially Matched Crossover, PMX)。

六、变异(Mutation) 在新生成的个体中执行变异操作,以增加种群多样性。对于TSP问题,一般采取逆序交换突变(Inversion Mutation)或swap突变.

七、 elitism(精英保留) 为了防止优秀解在进化过程中丢失,可以设置一定数量的最优个体直接复制到下一代种群中。

八、迭代与终止条件 上述步骤反复进行,直至满足预先设定的终止条件,如达到预定的进化代数、最优适应度不再显著提高或达到某一特定适应度阈值。

5.完整程序

VVV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件算法开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值