函数包含自变量,因变量与映射。
首先定义一个函数,其数学表达式为
通过调整常量A,B,C的取值,观察函数f(x1,x2)的输出有什么规律。
将上表和逻辑与真值表做对比,会发现它们的运算结果是一致的。
与真值表:
调整常量的值,比如A=0.5 B=0.5 C=0.7 时,也可以得到逻辑与的运算结果。可见常量A,B,C的取值不是唯一的。
与非真值表
计算结果和与非真值表是一致的。
或真值表
计算结果和或真值表是一致的。
表达式1、表达式2、表达式3的定义域、值域都是一样的,类似于被
线性表达,区别是只有常量A,B,C的取值不一样,选取不同的常量,
实现了相应的与门、与非门、或门的运算。这里的常量是人为选择的,在解决实际问题时,常量A,B,C是通过计算(训练)得出的。
将表达式
改为图像表达,如下:
上图就是一个具有两个输入的感知机。是输入信号,
是输出信号,
是
的权重,
是阈值。
将输入增加到n个{},常量
变为权重{
},常量C换为
,得到有n个输入感知机的图像表达:
对应的函数表达式为:
设
,还可以写成矩阵形式
构成复杂神经网络的单细胞生物——感知机诞生了。
感知机由美国学者FrankRosenblatt在1957年提出。