TLD之检测篇(二)

TLD之检测篇(二)

    扫描方式前面已经说过,具体参数【5.3】:scales step =1.2, horizontal step =10 percent of width, vertical step =10 percent of height, minimal bounding box size = 20 pixels. This setting produces around 50k bounding boxes for a QVGA image (240×320), the exact number depends on the aspect ratio of the initial bounding box.

    TLD分类器的三道关卡

 

    如上图所示,TLD的检测算法共有三关:

    第一关:方差

    使用简单的阈值判断,阈值设定为初始选择目标方差的50%(存储在TLD::var),见5.3.150 percent of variance of the patch that was selected  for tracking

    第二关:随机森林分类器

 

    TLD特征

    首先介绍一下TLD所使用的特征,2bit BP,很简单,就是任意两个点的大小关系,取值只有0和1。结合后面的分类器,我更倾向于将特征定义为0/1组成的串/向量。具体来   说,首先随机产生13对坐标,然后比较对应坐标像素值的大小,得到13个0/1,最后依次组成13位二进制数,也就可以看出一个整数。为了去噪,预先对图像进行了高斯滤波。不过图TLD特征中,只有10位。

    TLD所使用的随机森林相当简单,一共有10棵树,每一棵树的分类特征就是上述的13位二进制串,与CART,ID3等决策树不同,它没有特征选择,它只是对特征分布进行了直方图统计,所以,每一个树可以看成一个贝叶斯分类器,而且直方图的区间数多到2^13。每一棵树分类的方法特么简单,正样本的概率为特征对应的区间正负样本数之比。最后对所有树的分类结果求和即为随机森林的最终分类结果,即正样本的概率。原文【5.3.2】说结果的平均值超过0.5就当做正样本,不过,实际代码中是超过0.6才算正样本,而结果超过0.5的负样本才作为随机森林重新训练的负样本,即hard negative。

    下面直接看源码实现

FerNNClassifier::prepare实现确定特征的比对位置,它在TLD::init函数中被调用,主要是这几个变量features[s][i]、thrN、 posteriors、pCounter、nCounter,命名非常直白,含义就不多说了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值