关于Sampler和Scheduler?这些内容是你需要知道的

在WebUI里,你所能看到的“采样方法”是一个单一的参数选项,但在Comfy UI 的核心采样器 KSampler 里,它会被“拆分”成两个单独的选项:Sampler Name(采样器名称)与 Scheduler (调度器)——

在这里插入图片描述
在这里插入图片描述
回溯Stable Diffusion生成一张图片的“去噪过程” ,SD会经由随机种子生成一张随机噪声图,然后利用训练好的”噪声预测器“(U-Net),结合输入的提示词等“条件”(Conditioning),进行“条件去噪”,在这张噪声图上不断添加一些形象,使之成为一张生成的新图片。

在这里插入图片描述
而广义的采样方法(Sampler),即代表在控制这个“去噪”过程的一种算法。简单地去理解,不同的算法会给你带来不同的采样结果,而不同算法对于采样步数的要求也可能会有些许差异。

在这里插入图片描述
在这里插入图片描述
如果你想更深入地挖掘这里面的技术原理,你可以在Reddit上的这一篇回答里,找到由 @ManBearScientist 撰写的这一篇回答,非常专业地列举了所有采样方法的来源与含义,以及它们是如何一步步积累取得今天的研究成果的
在这里插入图片描述
那调度器(Scheduler)呢?你可以把它看做是采样方法的一部分,主要用于控制采样过程中的时间步长。
大部分UI都会习惯将采样方法本身与调度器选项“合并”起来作为一种采样方法呈现给用户,但根据ComfyUI作者 @ComfyAnonymous 在这一个Issue中的答复:我决定把它作为一个单独的选项,因为它对我来说更有意义。

在这里插入图片描述
根据他的建议,如果你希望各种采样器能与其他UI中保持大致一样的行为,只需要使用Karras或Normal即可。

### DDIM采样器介绍及应用 #### 工作原理 DDIM(Denoising Diffusion Implicit Models)是一种改进版的扩散模型,相较于传统的DDPM(Denoising Diffusion Probabilistic Models),具备更优的样本生成质量一致性特性[^1]。在DDIM中,通过调整噪声逐步去除的过程,可以控制生成过程中的不确定性程度。这种灵活性使得DDIM能够在保持高质量的同时显著减少所需的迭代次数。 对于具体的实现细节而言,DDIM采用了一种非马尔科夫式的去噪步骤序列化策略,即允许相邻时间步之间的依赖关系存在,从而实现了更加平滑且可控的结果转换路径[^4]。这不仅提高了最终输出的质量,还赋予了模型更强的表现力,尤其是在处理复杂结构的数据集上表现尤为突出。 #### 实现方式 为了便于理解实际部署,下面给出一段基于Python语言编写的简化版本DDIM采样逻辑: ```python import torch from diffusers import DDIMScheduler, UNet2DModel def ddim_sampling(model: UNet2DModel, scheduler: DDIMScheduler, latent_variable, num_inference_steps=50): """ 使用给定的UNet模型调度程序执行一次DDIM抽样 参数: model (UNet2DModel): 训练好的U-Net网络实例. scheduler (DDIMScheduler): 调度算法对象. latent_variable : 初始潜在向量. num_inference_steps (int): 推理过程中使用的总步数,默认为50. 返回值: List[Tensor]: 各阶段产生的中间状态列表. """ images = [] with torch.no_grad(): for t in reversed(range(num_inference_steps)): # 获取当前时刻t对应的beta_t其他必要参数 timestep = torch.tensor([t]*latent_variable.shape[0]).to(latent_variable.device) # 预测噪音并计算预测后的x_0̂ noise_pred = model(latent_variable, timestep).sample # 更新潜变量 prev_latents = scheduler.step(noise_pred, t, latent_variable).prev_sample # 存储每一步骤得到的新图象 images.append(prev_latents.clone()) latent_variable = prev_latents return images[-1] ``` 上述代码片段展示了如何利用预训练过的`UNet2DModel`配合特定配置下的`DDIMScheduler`来完成一轮完整的图像合成任务。值得注意的是,这仅提供了一个高度抽象化的接口定义;真实环境中还需要考虑更多因素如设备兼容性、数据预处理等。 #### 应用场景 DDIM因其独特的优势被广泛应用于各类视觉创作领域,特别是在需要高效稳定地生成高分辨率图片的任务表现出色。例如,在艺术风格迁移项目中,开发者们往往倾向于选用DDIM作为默认选项之一,因为其能够有效降低计算成本同时维持良好的画质水平[^2]。此外,借助于内置的一致性质,用户还可以轻松实施诸如跨域翻译或是条件引导等功能扩展,进一步拓宽了技术的应用边界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值