ABC240G Teleporting Takahashi[组合数学]

在这里插入图片描述题意:走 N N N步从 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)走到 ( X , Y , Z ) (X,Y,Z) (X,Y,Z)的不同路径条数(每一步不能不走且步长为1)
不失一般性的我们可以设 ( X , Y , Z > 0 ) (X,Y,Z>0) (X,Y,Z>0)
首先考虑走 ( X + Y + 2 k ) (X+Y+2k) (X+Y+2k)步从 ( 0 , 0 ) (0,0) (0,0)走到 ( X , Y ) (X,Y) (X,Y)
枚举 X X X正方向的步数 ( X + i ) (X+i) (X+i),总的走法就是
C x + y + 2 k k ∑ i = 0 k C k i × C x + y + k x + i = C x + y + 2 k k ∑ i = 0 k C k k − i × C x + y + k x + i = C x + y + 2 k k × C x + y + 2 k y + k C^k_{x+y+2k}\sum _{i=0}^{k}C_k^i\times C_{x+y+k}^{x+i}=C^k_{x+y+2k}\sum _{i=0}^{k}C_k^{k-i}\times C_{x+y+k}^{x+i}=C^k_{x+y+2k} \times C_{x+y+2k}^{y+k} Cx+y+2kki=0kCki×Cx+y+kx+i=Cx+y+2kki=0kCkki×Cx+y+kx+i=Cx+y+2kk×Cx+y+2ky+k
其中 C x + y + 2 k k C^k_{x+y+2k} Cx+y+2kk枚举了多走的 k k k步的位置, C k i × C x + y + k x + i C_k^i\times C_{x+y+k}^{x+i} Cki×Cx+y+kx+i分别枚举了 X X X方向回退的 i i i步的位置和 X X X方向走的 ( X + i ) (X+i) (X+i)步位置
其中等式 ∑ i = 0 k C k k − i × C x + y + k x + i = C x + y + 2 k y + k \sum _{i=0}^{k}C_k^{k-i}\times C_{x+y+k}^{x+i}=C_{x+y+2k}^{y+k} i=0kCkki×Cx+y+kx+i=Cx+y+2ky+k是著名的范德蒙恒等式
一般形式为 ∑ i = 0 k C m k − i × C n i = C m + n k \sum _{i=0}^{k}C_{m}^{k-i}\times C^i_{n}=C^k_{m+n} i=0kCmki×Cni=Cm+nk
推导过程如下:

考虑在一堆和为 ( m + n ) (m+n) (m+n)数量的物品中选 k k k个的方案数,考虑前 n n n个中选了 i i i个,后 m m m个中选了 ( k − i ) (k-i) (ki)个的方案,枚举所有 i i i求和就得到了答案。

接下来考虑 Z Z Z方向上的情况,剩余未考虑的步数为 N − ( X + Y + 2 k ) N-(X+Y+2k) N(X+Y+2k),这些步数中朝 Z Z Z负方向的有 ( N − ( X + Y + Z + 2 k ) ) / 2 (N-(X+Y+Z+2k))/2 (N(X+Y+Z+2k))/2步,其余为正方向
则对于某个 k k k,方案为
C x + y + 2 k k × C x + y + 2 k y + k × C N N − ( x + y + 2 k ) × C N − ( X + Y + 2 k ) ( N − ( X + Y + Z + 2 k ) ) / 2 C^k_{x+y+2k} \times C_{x+y+2k}^{y+k}\times C^{N-(x+y+2k)}_{N}\times C^{(N-(X+Y+Z+2k))/2}_{N-(X+Y+2k)} Cx+y+2kk×Cx+y+2ky+k×CNN(x+y+2k)×CN(X+Y+2k)(N(X+Y+Z+2k))/2
枚举所有 k k k就得到了答案,复杂度 O ( N ) O(N) O(N)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=998244353;
ll poww(ll a,ll b)
{
	ll t=1;
	while(b)
	{
		if(b&1)t=a*t%mod;
		a=a*a%mod;
		b>>=1;
	}
	return t;
}
ll inv(ll x)
{
	return poww(x,mod-2);
}
ll P1[10000005],P2[10000005];
void init()
{
	P1[0]=1;
	for(int i=1;i<=10000000;i++)P1[i]=1LL*P1[i-1]*i%mod;
	P2[10000000]=inv(P1[10000000]);
	for(int i=9999999;i>=0;i--)P2[i]=1LL*P2[i+1]*(i+1)%mod;
}
ll C(ll n,ll m)
{
	return 1LL*P1[n]*P2[m]%mod*P2[n-m]%mod;
}
int main()
{
	init();
	ll N,X,Y,Z;
	scanf("%lld%lld%lld%lld",&N,&X,&Y,&Z);
	X=abs(X);
	Y=abs(Y);
	Z=abs(Z);
	ll left=N-X-Y-Z;
	if(left<0||(left%2!=0))printf("0");
	else
	{
		ll ans=0;
		for(int k=0;k<=left/2;k++)
		{
			ans=(ans+1LL*C(X+Y+2*k,k)*
				C(X+Y+2*k,Y+k)%mod*
				C(N,N-(X+Y+2*k))%mod*
				C(N-(X+Y+2*k),(N-(X+Y+2*k+Z))/2)%mod
				)%mod;
		}
		printf("%lld\n",ans);
	}	
    return  0;
}


  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值