keras解决多标签分类问题

本文介绍了多分类和多标签分类的区别,并重点探讨了如何使用Keras解决多标签分类问题。在多标签分类中,每个样本可以对应多个标签,模型的输出层不需要使用softmax,而是采用sigmoid激活函数,确保每个标签的概率独立。在训练时,通常选用binary_crossentropy作为损失函数。
摘要由CSDN通过智能技术生成

multi-class classification problem: 多分类问题是相对于二分类问题(典型的0-1分类)来说的,意思是类别总数超过两个的分类问题,比如手写数字识别mnist的label总数有10个,每一个样本的标签在这10个中取一个。

multi-label classification problem:多标签分类(或者叫多标记分类),是指一个样本的标签数量不止一个,即一个样本对应多个标签。


一般问题定义

一般情况下,假设我们的分类问题有5个标签,样本数量为n,数学表示为:

X={ x1,x2,...,xn}Y={ y1,y2,y3,y4,y5},
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值