anaconda
1、安装最新的,安装过程选上“添加环境变量”
Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
2、“conda --version”,确认环境变量生效。
第一遍没有弹出来,手动cd过去“_conda --version”就有了,再之后全局就正常了
3、conda自带的python如果不能全局变量,并且调起了微软商店。需要把环境变量里WindowsApps排在anaconda3后面
4、在Anaconda prompt里
conda create -n yolov8 python=3.12,基于python版本生成环境,conda安装时有选择
conda activate yolov8,激活切换环境
conda activate base,默认环境命名为base
conda info --envs,查看已经生成的环境
pip list
conda list,相比上一条, 能看到安装来源
pycharm
pycharm,我不改默认安装路径,因为我不分盘,默认分盘我也合并
下载 PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDE
cuda
1、nvidia-smi查看当前N卡驱动等信息,驱动精灵更新到最新nvidia驱动,cuda支持12.6
2、这里version是指windows的版本,我查了好久对应版本,后来在某个评论才看到。
CUDA Toolkit 12.6 Downloads | NVIDIA Developer
3、自定义安装,全选
4、nvcc -V,确认cuda已安装
pytroch
1、pytorch选择合适版本,cuda安装的12.6,pytorch选最新
2、复制到conda运行,全程挂梯子
3、pip list,对比安装pytorch前后,是否正确安装
ultralytics
1、安装ultralytics,我整不明白花里胡哨的,先pip给安装
pip install ultralytics
2、有报错,对比之前pip list,torch给降低版本了
3、对比发现,ultralytics有3个包比pytroch的版本低
,2.4.1
,2.0.1
,0.19.1
4、对比官网,pip pytroch的包更新一些,手动降版本,适配ultralytics(我觉得都不算两个东西)
Previous PyTorch Versions | PyTorch
5、手动降版本,查看pip list,符合官网的版本关系了。
然后又手动一次pip install ultralytics,没有报错了
yolo下载
1、选个差不多的版本,选了8.1版
ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite (github.com)
2、文件夹以python项目打开
3、修改interpreter,修改成conda已经建立环境里的python。因为之前是在这个环境下pip安装pytroch等。
环境测试
1、挂梯子,按官网文档在conda执行
2、找到下载路径和生成路径,对比图片。原始图片和模型文件,在同一个路径。
图片或模型下载进度不动,换梯子节点
3、github有其他已训练的模型可以使用
ultralytics/ultralytics at v8.1.0 (github.com)
11111111111111111