Yolov8笔记

anaconda

1、安装最新的,安装过程选上“添加环境变量”

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

2、“conda --version”,确认环境变量生效。

第一遍没有弹出来,手动cd过去“_conda --version”就有了,再之后全局就正常了

3、conda自带的python如果不能全局变量,并且调起了微软商店。需要把环境变量里WindowsApps排在anaconda3后面

4、在Anaconda prompt里

conda create -n yolov8 python=3.12,基于python版本生成环境,conda安装时有选择
conda activate yolov8,激活切换环境
conda activate base,默认环境命名为base

conda info --envs,查看已经生成的环境

pip list

conda list,相比上一条, 能看到安装来源

pycharm

pycharm,我不改默认安装路径,因为我不分盘,默认分盘我也合并

下载 PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDE

cuda

1、nvidia-smi查看当前N卡驱动等信息,驱动精灵更新到最新nvidia驱动,cuda支持12.6

2、这里version是指windows的版本,我查了好久对应版本,后来在某个评论才看到。

CUDA Toolkit 12.6 Downloads | NVIDIA Developer

3、自定义安装,全选

4、nvcc -V,确认cuda已安装

pytroch

1、pytorch选择合适版本,cuda安装的12.6,pytorch选最新

PyTorch

2、复制到conda运行,全程挂梯子

3、pip list,对比安装pytorch前后,是否正确安装

ultralytics

1、安装ultralytics,我整不明白花里胡哨的,先pip给安装

pip install ultralytics

2、有报错,对比之前pip list,torch给降低版本了

3、对比发现,ultralytics有3个包比pytroch的版本低

,2.4.1

,2.0.1

,0.19.1

4、对比官网,pip pytroch的包更新一些,手动降版本,适配ultralytics(我觉得都不算两个东西)

Previous PyTorch Versions | PyTorch

5、手动降版本,查看pip list,符合官网的版本关系了。

然后又手动一次pip install ultralytics,没有报错了

yolo下载

1、选个差不多的版本,选了8.1版

ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite (github.com)

2、文件夹以python项目打开

3、修改interpreter,修改成conda已经建立环境里的python。因为之前是在这个环境下pip安装pytroch等。

环境测试

1、挂梯子,按官网文档在conda执行

CLI - Ultralytics YOLO Docs

2、找到下载路径和生成路径,对比图片。原始图片和模型文件,在同一个路径。

图片或模型下载进度不动,换梯子节点

3、github有其他已训练的模型可以使用

ultralytics/ultralytics at v8.1.0 (github.com)

11111111111111111

根据引用和引用的内容,YOLOv8是一种目标检测模型。与YOLOv5相比,YOLOv8的yaml配置文件改动较小。YOLOv8采用了Anchor-Free的思想,使用VFL Loss、DFL Loss和CIOU Loss作为分类损失函数,并采用了Task-Aligned Assigner匹配方式进行样本匹配。此外,YOLOv8还引入了YOLOv8 Nano(速度最快)和YOLOv8 Extra Large(准确性最高)等不同规模的模型。 如果你想学习YOLOv8的相关知识,可以参考官方文档或者专业的教程。这些资源可以帮助你理解YOLOv8的原理、配置文件和模型性能,并帮助你开始使用和学习YOLOv8。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [YOLOv8模型学习笔记](https://blog.csdn.net/pengxiang1998/article/details/129151514)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [YOLOv8学习笔记](https://blog.csdn.net/GoodTime1110/article/details/129767920)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值