DeepLearning
文章平均质量分 66
woodman718
这个作者很懒,什么都没留下…
展开
-
Nvidia 安装篇-精简-自用
自用,已测试。原创 2024-03-23 23:29:46 · 373 阅读 · 0 评论 -
Ubuntu2022.04+cuda12.1+torch2.1
国内的源,速度优势明显。常用的有清华、阿里等。原创 2023-11-12 16:03:58 · 1926 阅读 · 1 评论 -
那些年我踩过的坑--计算FLOPs
一 Pytorchpytorch有很多种包,有特殊需求的可以去GitHub上再找找。(天也不 早了,我就简单掰扯几句)1 安装#conda 的某个环境下安装pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.gitpip install onnx2 导入模块#此处省略了模块的导入,网上教程很多,不多做赘述。from thop.profile import profilenetwork原创 2022-05-25 00:55:44 · 888 阅读 · 0 评论 -
自己搭建个两层神经网络来跑跑“Hello World”--MNIST
import numpy as npimport pandas as pdimport matplotlib.pylab as pltimport pickleimport sys, ossys.path.append(os.pardir)In [3]def cross_entropy_error(y, t): if y.ndim == 1: t = t.reshape(1, t.size) y = y.reshape(1, y.size) .原创 2021-05-11 15:22:59 · 173 阅读 · 0 评论 -
在MNIST上用Pytorch跑跑GPU
目录前言一、Pytorch的入门二、使用步骤1.引入库2.读入数据3.定义卷积神经网络4.Training5.在测试集上测试模型总结前言深度学习中有很多入门数据,MNIST被称为机器学习的“Hello World”,一个人能否入门深度学习往往就是以能否玩转MNIST数据来判断的。PyTorch有一个很好的模块nn,它提供了一种有效构建大型神经网络的好方法。我们将按顺序执行以下步骤:使用torchvision加载并标准化 MNIST 训练和测试数据集原创 2021-05-03 00:33:21 · 451 阅读 · 2 评论 -
新人在阅读深度学习论文时,常常会遇到的几个困惑。
深度学习是时下AI领域的研究热点,但是很多大佬的“简单”、“显然”等,对新人而言可能需要花几天几夜时间查找资料才能理解。正是出于这样的考量,本文以BBN的阅读为例,列举了几个“简单”的常识。BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual RecognitionAuthors:Boyan Zhou, Quan Cui, Xiu-Shen Wei, Zhao-Min Chen【概述】数据分原创 2021-04-25 11:52:54 · 763 阅读 · 0 评论