主要内容
1. 个体词 ①个体常项 ②个体变项 ③个体域 ④全总个体域
2. 谓词 ①谓词常项 ②谓词变项 ③n(n≥1)元谓词 ④特性谓词
3. 量词 ①全称量词 ②存在量词
4. 一阶逻辑中命题符号化
5. 一阶逻辑公式 ①原子公式 ②合式公式(或公式) ③闭式
6. 解释
7. 一阶逻辑公式的分类 ①逻辑有效式(或永真式)②矛盾式(或永假式) ③可满足式
学习要求
1. 要求准确地将给出的命题符号化:
①当给定个体域时,在给定个体域内将命题符号化
②当没给定个体域时,应在全总个体域内符号化
③在符号化时,当引入特性时,注意全称量词与蕴含联结词的搭配,存在量词与合取联结词的搭配。
2. 深刻理解逻辑有效式、矛盾式、可满足式的概念。
3. 记住闭式的性质:在任何解释下均为命题。
4. 对给定的解释,会判别公式的真值或不能确定真值。
==================================================
在命题逻辑中,命题是最基本的单位,对简单命题不再进行分解,并且不考虑命题之间的内在联系和数量关系。因而命题逻辑具有局限性,甚至无法判断一些简单而常见的推理。考虑下面的推理:
凡偶数都能被2整除;6是偶数。
所以,6能被2整除。
这个推理是我们公认的数学推理中的真命题,但是在命题逻辑中却无法判断它的正确性。因为在命题逻辑中只能将推理中出现的三个简单命题依次符号化为p,q,r,将推理的形式结构符号化为
(p∧q)→r
由于上式不是重言式,所以不能由它判断推理的正确性。为了克服命题逻辑的局限性,就应该将简单命题再细分,分析出个体词,谓词和量词,以期达到表达出个体与总体的内在联系和数量关系,这就是一阶逻辑所研究的内容。一阶逻辑也称一阶谓词逻辑或谓词逻辑。
一阶逻辑的符号化
下面直接仿照1.1来对谓词逻辑进行符号化。
个体词,谓词和量词是一阶逻辑命题符号化的三个基本要素。下面讨论这三个要素。
个体词
个体词是指所研究对象中可以独立存在的具体的或抽象的客体。例如,小王,小李,中国,,3等都可以作为个体词。将表示具体或特定的客体的个体词称作个体常项,一般用小写英文字母a,b,c…表示;而将表示抽象或泛指的个体词称为个体变项,常用x,y,z…表示。称个体变项的取值范围为个体域(或称论域)。个体域可以是有穷集合,例如,{1,2,3},{a,b,c,d},{a,b,c,…,x,y,z},…;也可以是无穷集合,例如,自然数集合N={0,1,2,…},实数集合R={x|x是实数}…。有一个特殊的个体域,它是由宇宙间一切事物组成的,称它为全总个体域。本书在论述或推理中如没有指明所采用的个体域,都是使用全总个体域。
谓词
谓词是用来刻画个体词性质及个体词之间相互关系的词。考虑下面四个命题(或命题公式):
(1)是无理数。
(2)x是有理数。
(3)小王与小李同岁。
(4)x与y具有关系L.
在(1)中,是个体常项,“…是无理数”是谓词,记为F,并用F()表示(1)中命题。在(2)中,x是个体变项,“…是有理数”是谓词,记为G,用G(x)表示(2)中命题。在(3)中,小王,小李都是个体常项,“…与…同岁”是谓词,记为H,则(3)中命题符号化形式为H(a,b),其中,a:小王,b:小李。在(4)中,x,y为两个个体变项,谓词为L,(4)的符号化形式为L(x,y).
同个体词一样,谓词也有常项和变项之分。表示具体性质或关系的谓词称为谓词常项,表示抽象的、泛指的性质或关系的谓词称为谓词变项。无论是谓词常项或变项都用大写英文字母F,G,H,…表示,可根据上下文区分。在上面四个命题中,(1),(2),(3)中谓词F,G,H是常项,而(4)中谓词L是变项。一般的,用F(a)表示个体常项a具有性质F(F是谓词常项或谓词变项),用F(x)表示个体变项x具有性质F.而用F(a,b)表示个体常项a,b具有关系F,用F(x,y)表示个体变项x,y具有关系F.更一般的,用P(x1,x2,…,xn)表示含n(n≥1)个命题变项的n元谓词。n=1时,P(x1)表示x1具有性质P;n≥2时,P(x1,x2,…,xn)表示x1,x2,…,xn具有关系P.实质上,n元谓词P(x1,x2,…,xn)可以看成以个体域为定义域,以{0,1}为值域的n元函数或关系。它不是命题。要想使它成为命题,必须用谓词常项取代P,用个体常项a1,a2,…,an取代x1,x2,…,xn,得P(a1,a2,…,an)是命题。
有时候将不带个体变项的谓词称为0元谓词,例如,F(a),G(a,b),P(a1,a2,…,an)等都是0元谓词。当F,G,P为谓词常项时,0元谓词为命题。这样一来,命题逻辑中的命题均可以表示成0元谓词,因而可以将命题看成特殊的谓词。
例4.1 将下列命题在一阶逻辑中用0元谓词符号化,并讨论它们的真值:(1)只有2是素数,4才是素数。
(2)如果5大于4,则4大于6.
解 (1)设一元谓词F(x):x是素数,a:2,b:4。(1)中命题符号化为0元谓词的蕴涵式:
F(b)→F(a)
由于此蕴涵前件为假,所以(1)中命题为真。
G(b,a)→G(a,c)
由于G(b,a)为真,而G(a,c)为假,所以(2)中命题为假。
量词
有了个体词和谓词之后,有些命题还是不能准确的符号化,原因是还缺少表示个体常项或变项之间数量关系的词。称表示个体常项或变项之间数量关系的词为量词。量词可分两种:
(1) 全称量词
日常生活和数学中所用的“一切的”,“所有的”,“每一个”,“任意的”,“凡”,“都”等词可统称为全称量词,将它们符号化为“”。并用x,y等表示个体域里的所有个体,而用xF(x),yG(y)等分别表示个体域里所有个体都有性质F和都有性质G。
(2) 存在量词日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,将它们都符号化为“ ”。并用 x, y等表示个体域里有的个体,而用 xF(x), yG(y)等分别表示个体域里存在个体具有性质F和存在个体具有性质G等。
一阶逻辑命题符号化
例4.2 在个体域分别限制为(a)和(b)条件时,将下面两个命题符号化:
(1) 凡人都呼吸。
(2) 有的人用左手写字。
其中:(a)个体域D1为人类集合;
(b)个体域D2为全总个体域。
解 (a)令F(x):x呼吸。G(x):x用左手写字。
(1) 在D1中除了人外,再无别的东西,因而“凡人都呼吸”应符号化为
xF(x) (4.1)
(2) 在D1中的有些个体(人)用左手写字,因而“有的人用左手写字”符号化为
xG(x) (4.2)
(b) D2中除了有人外,还有万物,因而在(1),(2)符号化时,必须考虑将人分离出来。令M(x):x是人。在D2中,(1),(2)可以分别重述如下:
(1)对于宇宙间一切事物而言,如果事物是人,则他要呼吸。
(2)在宇宙间存在着用左手写字的人。
于是(1),(2)的符号化形式分别为
x(M(x)→F(x)) (4.3)
和
x(M(x)∧G(x)) (4.4)
其中F(x)与G(x)的含义同(a)中。
由例4.2可知,命题(1),(2)在不同的个体域D1和D2中符号化的形式不一样。主要区别在于,在使用个体域D2时,要将人与其他事物区分开来。为此引进了谓词M(x),像这样的谓词称为特性谓词。在命题符号化时一定要正确使用特性谓词。
问: (a)能否将(1)符号化为x(M(x)∧F(x))?
(b)能否将(2)符号化为x(M(x)→G(x))?
例4.3 在个体域限制为(a)和(b)条件时,将下列命题符号化:
(1) 对于任意的x,均有x2-3x+2=(x-1)(x-2).
(2) 存在x,使得x+5=3.
其中: (a)个体域D1=N(N为自然数集合)
(b)个体域D2=R(R为实数集合)
解 (a)令F(x): x2-3x+2=(x-1)(x-2),G(x): x+5=3。命题(1)的符号化形式为
xF(x) (4.7)
命题(2)的符号化形式为
xG(x) (4.8)
显然(1)为真命题;而(2)为假命题,因为N不含负数。