离散数学归总

离散数学是现代数学的一个重要分支,计算机科学与技术一级学科的核心课程,是整个计算机学科的专业基础课。离散数学是以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此它充分描述了计算机科学离散性的特点。离散数学是随着计算机科学的发展而逐步建立的,它形成于七十年代初期,是一门新兴的工具性学科。

引言

数理逻辑

逻辑学 是一门研究思维形式及思维规律的科学,也就是研究推理过程的规律的科学。逻辑规律就是客观事物在人的主观意识中的反映。逻辑学分为辩证逻辑与形式逻辑两种, 辩证逻辑 是以辩证法认识论的世界观为基础的逻辑学, 形式逻辑 主要是对思维的形式结构和规律进行研究的类似于语法的一门工具性学科。思维的形式结构包括了概念、判断和推理之间的结构和联系,其中概念是思维的基本单位,通过概念对事物是否具有某种属性进行肯定或否定的回答,这就是 判断 ;由一个或几个判断推出另一判断的思维形式,就是 推理 。用数学方法来研究推理的规律称为 数理逻辑 。这里所指的数学方法,就是引进一套符号体系的方法,在其中表达和研究推理的规律。  

集合论

集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。

G.康托尔是作为数学分支的集合论的奠基人。1870年前后,他关于无穷序列的研究导致集合论的系统发展。1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。1878年,他引进了两个集合具有相等的“势”的概念。然而,朴素集合论中包含着悖论。第一个悖论是布拉利-福尔蒂的最大序数悖论。1901年罗素发现了有名的罗素悖论。1932年康托尔也发表了关于最大基数的悖论。 集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。公理集合论中一个有名的猜想是连续统假设(CH)。K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。

代数结构

代数结构也叫做抽象代数,主要研究抽象的代数系统。抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。例如在形式语言中常将有穷字符表记为∑,由∑上的有限个字符(包括0个字符)可以构成一个字符串,称为∑上的字。∑上的全体字符串构成集合∑*。设α,β是∑*上的两个字,将β连接在α后面得到∑*上的字αβ。如果将这种连接看作∑*上的一种运算,那么这种运算不可交换,但是可结合。集合∑*关于连接运算就构成了一个代数系统,它恰好是抽象代数系统--半群的一个实例。抽象代数在计算机中有着广泛的应用,例如自动机理论、编码理论、形式语义学、代数规范、密码学等等都要用到抽象代数的知识。代数结构的主要研究对象就是各种典型的抽象代数系统。

构成一个抽象代数系统有三方面的要素:集合、集合上的运算以及说明运算性质或运算之间关系的公理。请看下面的例子。

整数集合Z和普通加法+构成了代数系统〈Z,+〉,n阶实矩阵的集合Mn(R)与矩阵加法+构成代数系统〈Mn(R),+〉。幂集P(B)与集合的对称差运算也构成了代数系统<P(B),>。类似这样的代数系统可以列举出许多许多,他们都是具体的代数系统。考察他们的共性,不难发现他们都含有一个集合,一个二元运算,并且这些运算都具有交换性和结合性等性质。为了概括这类代数系统的共性,我们可以定义一个抽象的代数系统<A,>,其中 A是一个集合,是A上的可交换、可结合的运算,这类代数系统实际上就是交换半群。

为了研究抽象的代数系统,我们需要先定义一元和二元代数运算以及二元运算的性质,并通过选择不同的运算性质来规定各种抽象代数系统的定义。在此基础上再深入研究这些抽象代数系统的内在特性和应用。


PS:关于数理逻辑与集合论发展介绍,在博文[数理逻辑与集合论发展 ] )

图论

图论是离散数学的重要组成部分,是近代应用数学的重要分支。

人们常称1736年是图论历史元年,因为在这一年瑞士数学家欧拉&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值