论文:Learn to Dance with AIST++: Music Conditioned 3D Dance Generation
数据集:https://google.github.io/aistplusplus_dataset/
提出了一个基于Transformer的学习框架,用于基于音乐的3D舞蹈生成。设计了一个全新的网络框架,并验证得出获得高质量结果的关键。其中组件之一是深度跨模transformer,可以很好地学习音乐和舞蹈运动之间的相关性,并且具有 future-N 机制的全注意力在产生长距离 non-freezing 运动中至关重要。
AIST++ 数据集
我们提出了一个名为AIST++的成对3D运动和音乐的新数据集,我们从AIST多视点舞蹈视频中重建该数据集。AIST++是一个大型的3D人体舞蹈动作数据集,包含各种各样的3D动作搭配音乐。
AIST++提供了 10.1M 张图像的 3D 人体关键点标注和相机参数,涵盖 9 个视角的 30 个不同主体。以此成为现有的最大、最丰富的三维人体关键点标注数据集。