一、推荐系统的冷启动问题
推荐系统有一个万年问题,即“冷启动问题”。冷启动问题是指在系统积累数据量过少的情况下做推荐,导致无法给用户做个性化推荐的问题。冷启动问题可分为三类:
1、用户冷启动
用户冷启动是指当新用户到来时,由于缺失用户的行为数据,所以无法根据他的历史行为预测其兴趣,从而无法借此给用户做个性化推荐。出现用户冷启动问题时,主要是解决如何给新用户做个性化推荐的问题。
2、物品冷启动
物品冷启动是指当新物品上架时,由于没有物品的历史数据,所以无法根据历史记录将其推荐给可能对它感兴趣的用户的问题。出现物品冷启动问题时,主要是解决如何将新的物品推荐给可能对它感兴趣的用户这一问题。
3、系统冷启动
系统冷启动是指当推出新系统时,为这个系统设计个性化推荐系统的问题。出现系统冷启动问题时,主要是解决如何在一个新开发的网站上(还没有用户,也没有用户行为,只有一些物品的信息)设计个性化推荐系统,从而在网站刚发布时就让用户体验到个性化推荐服务这一问题。
二、推荐系统冷启动问题的解决方案
解决冷启动问题的方案主要有:
1、对新用户,利用用户注册时提供的年龄、性别、地区、喜好、关联的社交账号相关信息、好友信息等数据,做个性化推荐;
2、对新用户,推荐热门排行榜,等收集到用户数据后再进行个性化推荐;
3、对新物品,根据物品描述和内容信息,进行个性化推荐;
4、对新物品,提升粒度,