-
冷启动 Cold Start
-
冷启动主要类别
冷启动问题一般归为 3 个类别:
-
系统冷启动:由于新业务,新上线的推荐系统,没有任何数据基础;
-
用户冷启动:由于新注册用户,缺少点击、浏览及购买等历史数据;
-
物品冷启动:由于新上线商家、物品等,缺少浏览购买等历史数据;
-
-
对应处理方案
-
对于系统冷启动
∙ \bullet ∙ 整个推荐系统新上线,缺少基础数据。对于系统冷启动,应当引入外部资源,利用专家经验,选用合适推荐架构、建立合适的推荐策略,并适当建立物品间关联。
-
对于用户冷启动
∙ \bullet ∙ 拓展用户画像,注册时收集信息。比如年轻的都市女性,往往有较高的消费能力,在推荐策略上可以推荐高规格的一些内容;
∙ \bullet ∙ 利用社交账号登陆,可从社交账号中获取用户详细信息;
∙ \bullet ∙ 特征挖掘,例如利用身份证号获取省、市、出生年月日、性别;利用出生年月可获得星座、属相等;
∙ \bullet ∙ 预采集,在初次登陆时让用户勾选感兴趣标签;
∙ \bullet ∙ 预推荐,记录所有用户在注册后的兴趣物品发展情况,将新注册用户在初始注册的特征空间中进行聚类,将其他相似用户的后续感兴趣的物品进行推荐
∙ \bullet ∙ 热门推荐,利用群体效应,将当前热门内容进行推送,大概率被用户接受;
∙ \bullet ∙ 随机推荐,将不同类别物品进行推荐,试探用户喜好,根据反馈做下一步推荐。
-
对于物品冷启动
∙ \bullet ∙ 特征挖掘,聚类推荐。提取出物品特征,而后对物品进行归类,之后利用基于物品相似度进行推荐;
∙ \bullet ∙ 给与新物品适度的曝光机会。
-
除了上述 3 种针对不同情况的不同处理方法以外,还有一种基于兴趣内容的推荐方法,下面进行介绍。
-
-
基于兴趣内容的推荐
-
是什么
针对新用户没有浏览、点击以及购买等历史数据,可以应用基于兴趣内容的推荐。简单来说就是计算用户与物品的匹配度,用于预测用户的兴趣。
在同一个特征空间内,对用户与物品进行描述,特征可以是关键词、打标签等。
例如:
用户_1(兴趣) 体育 足球 意甲 文章_1(属性) 体育 足球 英超 之后利用 one-hot 编码进行向量化,而后计算匹配度。将匹配度高的进行推荐。
item 体育 足球 意甲 英超 用户_1(兴趣) 1 1 1 0 文章_1(属性) 1 1 0 1 -
优点与缺点
优点:
∙ \bullet ∙ 无需其他用户、物品信息,用户、物品较少时也适用;适用于冷启动情景;
∙ \bullet ∙ 可以推荐冷门或新物品,能够针对用户进行更个性化推荐;
∙ \bullet ∙ 可解释性强,基于特征相似情况计算匹配度,便于提供推荐理由;
缺点:
∙ \bullet ∙ 要求抽取出有意义的特征;
∙ \bullet ∙ 无法利用群体效应;
∙ \bullet ∙ 依据用户的喜好进行推荐,很难出现新的推荐结果(惊喜);
-
重点
∙ \bullet ∙ 抽取特征方法;
∙ \bullet ∙ 匹配度计算(相似度、利用决策树、线性分类器判断是否喜欢);
-
推荐系统 - 冷启动问题 and 基于兴趣内容的推荐
最新推荐文章于 2025-02-14 12:47:55 发布