L2-LMDeploy 量化部署进阶实践-任务

1 配置LMDeploy环境

点选开发机,自拟一个开发机名称,选择Cuda12.2-conda镜像。

我们要运行参数量为7B的InternLM2.5,由InternLM2.5的码仓查询InternLM2.5-7b-chat的config.json文件可知,该模型的权重被存储为bfloat16格式

img

对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:

7×10^9 parameters×2 Bytes/parameter=14GB

70亿个参数×每个参数占用2个字节=14GB

所以我们需要大于14GB的显存,选择 30%A100*1(24GB显存容量),后选择立即创建,等状态栏变成运行中,点击进入开发机,我们即可开始部署。

在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

1.2 InternStudio环境获取模型

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models//Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

此时,我们可以看到/root/models中会出现internlm2_5-7b-chatInternVL2-26B文件夹。

1.3 LMDeploy验证启动模型文件

在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动InternLM2_5-7b-chat!

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

此时,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。

提问时,资源占用情况:

这里用的是80GB的显卡,即A100,权重占用14GB,剩余显存80-14=66GB,因此kv cache占用66GB*0.8=52.8GB,加上原来的权重14GB,总共占用66.8GB

实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于66.8GB

2 LMDeploy与InternLM2.5

2.1 LMDeploy API部署InternLM2.5

在上一章节,我们直接在本地部署InternLM2.5。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。

2.1.1 启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

命令解释:

  1. lmdeploy serve api_server:这个命令用于启动API服务器。
  2. /root/models/internlm2_5-7b-chat:这是模型的路径。
  3. --model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
  4. --quant-policy 0:这个参数指定了量化策略。
  5. --server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
  6. --server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
  7. --tp 1:这个参数表示并行数量(GPU数量)。

稍后可以看到启动成功:

通过ssh隧道开启本地端口,访问页面。

2.1.2 以命令行形式连接API服务器

关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,用SSH终端重新连接开发机。

运行如下命令,激活conda环境并启动命令行客户端。

conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。

2.1.3 以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

当然,6006端口也要通过SSH隧道映射到本地,稍待片刻,等终端如下图所示便保持两个终端不动。

打开浏览器访问本地gradio

2.2 LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

2.2.1 设置最大kv cache缓存大小

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

首先我们先来回顾一下InternLM2.5正常运行时占用显存。

占用68G,那么试一试执行以下命令,再来观看占用显存情况。

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

稍待片刻,观测显存占用情况,可以看到减少了约26GB的显存。

让我们计算一下26GB显存的减少缘何而来,

对于修改kv cache默认占用之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(68GB):

1、在 BF16 精度下,7B模型权重占用14GB:7×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用52.8GB:剩余显存80-14=66GB,kv cache默认占用80%,即66*0.8=52.8GB

3、其他项1GB

是故68GB=权重占用14GB+kv cache占用52.8GB+其它项1GB

对于修改kv cache占用之后的显存占用情况(42GB):

1、与上述声明一致,在 BF16 精度下,7B模型权重占用14GB

2、kv cache占用26.4GB:剩余显存80-14=66GB,kv cache修改为占用40%,即66*0.4=26.4GB

3、其他项1GB

是故41.4GB=权重占用14GB+kv cache占用26.4GB+其它项1GB

而此刻减少的26GB显存占用就是从66GB*0.8-66GB*0.4=26.4GB,这里计算得来。

2.2.2 设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 qant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。

我们通过 2.1 LMDeploy API部署InternLM2.5 的实践为例,输入以下指令,启动API服务器。

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

稍待片刻,显示如下即代表服务启动成功。

可以看到此时显存占用约42GB,相较于1.3 LMDeploy验证启动模型文件直接启动模型的显存占用情况(23GB)减少了4GB的占用。此时4GB显存的减少逻辑与1.3 LMDeploy验证启动模型文件一致,均因设置kv cache占用参数cache-max-entry-count至0.4而减少了4GB显存占用。

让我们计算一下2GB显存的减少缘何而来。

对于W4A16量化之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(68GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用52.8GB:剩余显存80-14=66GB,kv cache默认占用80%,即66*0.8=52.8GB

3、其他项1GB

是故68GB=权重占用14GB+kv cache占用52.8GB+其它项1GB

而对于W4A16量化之后的显存占用情况(66GB):

1、在 int4 精度下,7B模型权重占用3.5GB14/4=3.5GB

注释:

  • bfloat16是16位的浮点数格式,占用2字节(16位)的存储空间。int4是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16int4的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4参数仅占用3.5GB的显存

2、kv cache占用61.2GB:剩余显存80-3.5=76.5GB,kv cache默认占用80%,即76.5*0.8=61.2GB

3、其他项1GB

是故65.7GB=权重占用3.5GB+kv cache占用61.2GB+其它项1GB

2.2.4 W4A16 量化+ KV cache+KV cache 量化

我知道你们肯定有人在想,介绍了那么多方法,能不能全都要?当然可以!

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

只占用:36G

3 LMDeploy与InternVL2

本次实践选用InternVL2-26B进行演示,其实就根本来说作为一款VLM和上述的InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤,但作为量化部署进阶实践,选用InternVL2-26B目的是带领大家体验一下LMDeploy的量化部署可以做到何种程度。

3.1 LMDeploy Lite

InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。

3.1.1 W4A16 模型量化和部署

针对InternVL系列模型,让我们先进入conda环境,并输入以下指令,执行模型的量化工作。(本步骤耗时较长,请耐心等待)

lmdeploy lite auto_awq \
   /root/models/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 10 \
  --search-scale False \
  --work-dir /root/models/InternVL2-26B-w4a16-4bit

等终端输出如下时,说明正在推理中,稍待片刻。

3.1.2 W4A16 量化+ KV cache+KV cache 量化

输入以下指令,让我们启用量化后的模型。

lmdeploy serve api_server \
    /root/models/InternVL2-26B-w4a16-4bit \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.1\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

启动后观测显存占用情况,此时只需要约29GB的显存,已经是一张30%A100即可部署的模型了。

3.2 LMDeploy API部署InternVL2

具体封装操作与之前大同小异,仅仅在数个指令细节上作调整,故本章节大部分操作与2.1 LMDeploy API部署InternLM2.5中几近完全一样,同学们可自行"依葫芦画瓢",以下教程仅做参考。

通过以下命令启动API服务器,部署InternVL2模型:

lmdeploy serve api_server \
    /root/models/InternVL2-26B-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.6 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

其余步骤与2.1.1 启动API服务器剩余内容一致。

命令行形式、Gradio网页形式连接操作与

2.1.2 以命令行形式连接API服务器

2.1.3 以Gradio网页形式连接API服务器

步骤流程、指令完全一致,不再赘述。

以下为Gradio网页形式连接成功后对话截图。

4 LMDeploy之FastAPI与Function call

之前在2.1.1 启动API服务器3.2 LMDeploy API部署InternVL2均是借助FastAPI封装一个API出来让LMDeploy自行进行访问,在这一章节中我们将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。

4.1 API开发

与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

保持终端窗口不动,新建一个终端。 

在新建终端中输入如下指令,新建internlm2_5.py

touch /root/internlm2_5.py

 

将以下内容复制粘贴进internlm2_5.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

Ctrl+S键保存(Mac用户按Command+S)。

现在让我们在新建终端输入以下指令激活环境并运行python代码。

conda activate lmdeploy
python /root/internlm2_5.py

终端会输出如下结果。

 查看api_server输出:表示已经接收到请求并正常返回结果。

4.2 Function call

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

首先让我们进入创建好的conda环境并启动API服务器。

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。

让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py

touch /root/internlm2_5_func.py

双击打开,并将以下内容复制粘贴进internlm2_5_func.py

from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

Ctrl+S键保存(Mac用户按Command+S)。

现在让我们输入以下指令运行python代码。

python /root/internlm2_5_func.py

稍待片刻终端输出如下。

我们可以看出InternLM2.5将输入'Compute (3+5)*2'根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果16.

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值