异常检测

版权声明:随便转,取之于网络,用之于网络。。。

异常点检测,有时也叫离群点检测,英文一般叫做Novelty Detection或者Outlier Detection,这里就对异常点检测算法做一个总结。

1. 异常点检测算法使用场景

    什么时候我们需要异常点检测算法呢?常见的有三种情况。一是在做特征工程的时候需要对异常的数据做过滤,防止对归一化等处理的结果产生影响。二是对没有标记输出的特征数据做筛选,找出异常的数据。三是对有标记输出的特征数据做二分类时,由于某些类别的训练样本非常少,类别严重不平衡,此时也可以考虑用非监督的异常点检测算法来做。

              具体应用场景有,欺诈检测,入侵检测,生态系统失调,公共卫生,医疗等。

2. 异常点检测算法常见类别

    异常点检测的目的是找出数据集中和大多数数据不同的数据,常用的异常点检测算法有以下几类:

    第一类是基于统计学的方法来处理异常数据,这种方法一般会构建一个概率分布模型,并计算对象符合该模型的概率,把具有低概率的对象视为异常点。比如特征工程中的RobustScaler方法,在做数据特征值缩放的时候,它会利用数据特征的分位数分布,将数据根据分位数划分为多段,只取中间段来做缩放,比如只取25%分位数到75%分位数的数据做缩放。这样减小了异常数据的影响。

    第二类是基于聚类的方法来做异常点检测。这个很好理解,由于大部分聚类算法是基于数据特征的分布来做的,通常如果我们聚类后发现某些聚类簇的数据样本量比其他簇少很多,而且这个簇里数据的特征均值分布之类的值和其他簇也差异很大,这些簇里的样本点大部分时候都是异常点。比如BIRCH聚类算法原理DBSCAN密度聚类算法都可以在聚类的同时做异常点的检测。

    第三类是基于专门的异常点检测算法来做。这些算法不像聚类算法,检测异常点只是一个赠品,它们的目的就是专门检测异常点的,这类算法的代表是One Class SVM和Isolation Forest.

              第四类,如果训练数据做过标记,也可以定义为一种二分类问题,这里不做描述。

              第五类,基于近邻性,如KNN,这里不做描述

              第六类,基于密度,如LOF

3.基于统计学的异常检测

异常点(outlier)是一个数据对象,它明显不同于其他的数据对象,就好像它是被不同的机制产生的一样。例如下图红色的点,就明显区别于蓝色的点。相对于蓝色的点而言,红色的点就是异常点。

outlier

 

(一)基于正态分布的一元离群点检测方法

假设有 n 个点 (x_{1},...,x_{n}),那么可以计算出这 n 个点的均值\mu 和方差\sigma。均值和方差分别被定义为:

\mu=\sum_{i=1}^{n}x_{i}/n,

\sigma^{2}=\sum_{i=1}^{n}(x_{i}-\mu)^{2}/n.

在正态分布的假设下,区域 \mu\pm 3\sigma 包含了99.7% 的数据,如果某个值距离分布的均值\mu 超过了3\sigma,那么这个值就可以被简单的标记为一个异常点(outlier)。

(二)多元离群点的检测方法

涉及两个或者两个以上变量的数据称为多元数据,很多一元离群点的检测方法都可以扩展到高维空间中,从而处理多元数据。

(1)基于一元正态分布的离群点检测方法

假设 n 维的数据集合形如 \vec{x}_{i}=(x_{i,1},...,x_{i,n}), i\in \{1,...,m\},那么可以计算每个维度的均值和方差\mu_{j},\sigma_{j}, j\in\{1,...,n\}. 具体来说,对于j\in \{1,...,n\},可以计算

\mu_{j}=\sum_{i=1}^{m}x_{i,j}/m

\sigma_{j}^{2}=\sum_{i=1}^{m}(x_{i,j}-\mu_{j})^{2}/m

在正态分布的假设下,如果有一个新的数据 \vec{x},可以计算概率p(\vec{x}) 如下:

p(\vec{x})=\prod_{j=1}^{n} p(x_{j};\mu_{j},\sigma_{j}^{2})=\prod_{j=1}^{n}\frac{1}{\sqrt{2\pi}\sigma_{j}}\exp(-\frac{(x_{j}-\mu_{j})^{2}}{2\sigma_{j}^{2}})

根据概率值的大小就可以判断 x 是否属于异常值。运用该方法检测到的异常点如图,红色标记为异常点,蓝色表示原始的数据点。

Gauss

(2)多元高斯分布的异常点检测

假设 n 维的数据集合 \vec{x}=(x_{1},...,x_{n}),,可以计算 n 维的均值向量

\vec{\mu}=(E(x_{1}),...,E(x_{n}))

和 n\times n 的协方差矩阵:

\Sigma=[Cov(x_{i},x_{j})], i,j \in \{1,...,n\}

如果有一个新的数据 \vec{x},可以计算

p(\vec{x})=\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu}))

根据概率值的大小就可以判断 \vec{x} 是否属于异常值。

(3)使用 Mahalanobis 距离检测多元离群点

对于一个多维的数据集合 D,假设 \overline{a} 是均值向量,那么对于数据集 D 中的其他对象a,从a 到\overline{a} 的 Mahalanobis 距离是

MDist(a,\overline{a})=\sqrt{(a-\overline{a})^{T}S^{-1}(a-\overline{a})},

其中 S 是协方差矩阵。

在这里,MDist(a,\overline{a}) 是数值,可以对这个数值进行排序,如果数值过大,那么就可以认为点a 是离群点。或者对一元实数集合\{MDist(a,\overline{a})|a\in D\} 进行离群点检测,如果MDist(a,\overline{a}) 被检测为异常点,那么就认为a 在多维的数据集合 D 中就是离群点。

运用 Mahalanobis 距离方法检测到的异常点如图,红色标记为异常点,蓝色表示原始的数据点。

Mahalanobis

(4)使用 \chi^{2} 统计量检测多元离群点

在正态分布的假设下,\chi^{2} 统计量可以用来检测多元离群点。对于某个对象\bold{a}\chi^{2} 统计量是

\chi^{2}=\sum_{i=1}^{n}(a_{i}-E_{i})^{2}/E_{i}.

其中,a_{i} 是\bold{a} 在第 i 维上的取值,E_{i} 是所有对象在第 i 维的均值,n 是维度。如果对象 \bold{a} 的\chi^{2} 统计量很大,那么该对象就可以认为是离群点。

运用 \chi^{2} 统计量检测到的异常点如图,红色标记为异常点,蓝色表示原始的数据点。

ChiSquare

4.基于矩阵分解的异常检测

在介绍这种方法之前,先回顾一下主成分分析(Principle Component Analysis)这一基本的降维方法。

(一)主成分分析(Principle Component Analysis)

对高维数据集合的简化有各种各样的原因,例如:

(1)使得数据集合更容易使用;

(2)降低很多算法的计算开销;

(3)去除噪声;

(4)更加容易的描述结果。

在主成分分析(PCA)这种降维方法中,数据从原来的坐标系转换到新的坐标系,新坐标系的选择是由数据集本身所决定的。第一个新坐标轴的方向选择的是原始数据集中方差最大的方向,第二个新坐标轴的选择是和第一个坐标轴正交并且具有最大方差的方向。该过程一直重复,重复的次数就是原始数据中特征的数目。如此操作下去,将会发现,大部分方差都包含在最前面的几个新坐标轴之中。因此,我们可以忽略余下的坐标轴,也就是对数据进行了降维的处理。

为了提取到第一个主成分(数据差异性最大)的方向,进而提取到第二个主成分(数据差异性次大)的方向,并且该方向需要和第一个主成分方向正交,那么我们就需要对数据集的协方差矩阵进行特征值的分析,从而获得这些主成分的方向。一旦我们计算出了协方差矩阵的特征向量,我们就可以保留最大的 N 个值。正是这 N 个值反映了 N 个最重要特征的真实信息,可以把原始数据集合映射到 N 维的低维空间。

提取 N 个主成分的伪代码如下:


 
 
  1. 去除平均值
  2. 计算协方差矩阵
  3. 计算协方差矩阵的特征值和特征向量
  4. 将特征值从大到小排序
  5. 保留最大的N个特征值以及它们的特征向量
  6. 将数据映射到上述N个特征向量构造的新空间中

通过 Python 的 numpy 库和 matplotlib 库可以计算出某个二维数据集合的第一主成分如下:原始数据集使用蓝色的三角形表示,第一主成分使用黄色的圆点表示。

PCA

Principle Component Analysis 的基本性质:

Principle component analysis provides a set of eigenvectors satisfying the following properties:

(1)If the top-k eigenvectors are picked (by largest eigenvalue), then the k-dimensional hyperplane defined by these eigenvectors, and passing through the mean of the data, is a plane for which the mean square distance of all data points to it is as small as possible among all hyperplanes of dimensionality k.

(2)If the data is transformed to the axis-system corresponding to the orthogonal eigenvectors, the variance of the transformed data along each eigenvector dimension is equal to the corresponding eigenvalue. The covariances of the transformed data in this new representation are 0.

(3)Since the variances of the transformed data along the eigenvectors with small eigenvalues are low, significant deviations of the transformed data from the mean values along these directions may representoutliers.

(二)基于矩阵分解的异常点检测方法

基于矩阵分解的异常点检测方法的关键思想是利用主成分分析去寻找那些违背了数据之间相关性的异常点。为了发现这些异常点,基于主成分分析(PCA)的算法会把原始数据从原始的空间投影到主成分空间,然后再把投影拉回到原始的空间。如果只使用第一主成分来进行投影和重构,对于大多数的数据而言,重构之后的误差是小的;但是对于异常点而言,重构之后的误差依然相对大。这是因为第一主成分反映了正常值的方差,最后一个主成分反映了异常点的方差。

假设 dataMat 是一个 p 维的数据集合,有 N 个样本,它的协方差矩阵是 X。那么协方差矩阵就通过奇异值分解写成:

X=PDP^{T},

其中 P 是一个 (p,p) 维的正交矩阵,它的每一列都是 X 的特征向量。D 是一个 (p,p) 维的对角矩阵,包含了特征值 \lambda_{1},...,\lambda_{p}。从图像上看,一个特征向量可以看成 2 维平面上面的一条线,或者高维空间里面的一个超平面。特征向量所对应的特征值反映了这批数据在这个方向上的拉伸程度。通常情况下,可以把对角矩阵 D 中的特征值进行从大到小的排序,矩阵 P 的每一列也进行相应的调整,保证 P 的第 i 列对应的是 D 的第 i 个对角值。

这个数据集 dataMat 在主成分空间的投影可以写成

Y=dataMat\times P.

需要注意的是做投影可以只在部分的维度上进行,如果使用 top-j 的主成分的话,那么投影之后的数据集是

Y^{j}=dataMat \times P^{j},

其中 P^{j} 是矩阵 P 的前 j 列,也就是说P^{j} 是一个 (p,j) 维的矩阵,Y^{j} 是一个 (N,j) 维的矩阵。如果考虑拉回映射的话(也就是从主成分空间映射到原始空间),重构之后的数据集合是

R^{j}=(P^{j}\times (Y^{j})^{T})^{T}=Y^{j}\times (P^{j})^{T},

其中 R^{j} 是使用 top-j 的主成分进行重构之后形成的数据集,是一个 (N,p) 维的矩阵。

下面可以定义数据 dataMat_{i}=(dataMat_{i,1},...,dataMat_{i,p}) 的异常值分数(outlier score)如下:

score(dataMat_{i})=\sum_{j=1}^{p}(|dataMat_{i}-R_{i}^{j}|)\times ev(j)

ev(j)=\sum_{k=1}^{j}\lambda_{k}/\sum_{k=1}^{p}\lambda_{k}

注意到 |dataMat_{i}-R_{i}^{j}| 指的是 Euclidean 范数, ev(j) 表示的是 top-j 的主成分在所有主成分中所占的比例,并且特征值是按照从大到小的顺序排列的。因此,ev(j) 是递增的序列,这就表示 j 越高,越多的方差就会被考虑在 ev(j) 中,因为是从 1 到 j 的求和。在这个定义下,偏差最大的第一个主成分获得最小的权重,偏差最小的最后一个主成分获得了最大的权重 1。根据 PCA 的性质,异常点在最后一个主成分上有着较大的偏差,因此可以获得更高的分数。

整个算法的结构如图所示:

PCC

 

(三)效果展示

下面两幅图使用了同一批数据集,分别采用了基于矩阵分解的异常点检测算法和基于高斯分布的概率模型的异常点算法。

PCC2

基于矩阵分解的异常点检测

 

Gauss

基于高斯分布的概率模型的异常点检测

根据图像可以看出,如果使用基于矩阵分解的异常点检测算法的话,偏离第一主成分较多的点都被标记为异常点,其中包括部分左下角的点。需要注意的是如果使用基于高斯分布的概率模型的话,是不太可能标记出左下角的点的,两者形成鲜明对比。

5.基于神经网络Replicator Neural Networks

RNN 算法的主要思想

在这篇文章中,我们将会介绍一个多层的前馈神经网络,该神经网络可以用来进行异常值的检测。这个神经网络模拟的是一个恒等映射,输入层的神经元个数和输出层的神经元个数是一样的。这类的神经网络被称为 Replicator Neural Networks (RNNs),请注意这里的 RNN 算法指的并不是 Recurrent Neural Networks(RNNs),而是 Replicator Neural Networks,尽管它们拥有着同样的缩写名字 RNNs。具体来说, Replicator Neural Networks (RNNs),或者说自编码器,是一个多层前馈的神经网络 (multi-layer feed-forward neural networks)。在 Replicator Neural Networks 中,输入的变量也是输出的变量,模型中间层节点的个数少于输入层和输出层节点的个数。这样的话,模型就起到了压缩数据和恢复数据的作用。

rnn1

如图所示,这里的 RNNs 有三个隐藏层,输入层和输出层的节点个数都是6,第一个隐藏层和第三个隐藏层的节点个数(图中是4个节点)少于输入层,第二个隐藏层的节点个数是最少的(图中是2个节点)。在神经网络传输的时候,中间使用了 tanh 函数和 sigmoid 函数。这个神经网络是训练一个从输入层到输出层的恒等函数(identity mapping),传输的时候从输入层开始压缩数据,然后到了第二个隐藏层的时候开始解压数据。训练的目标就是使得整体的输出误差足够小,整体的误差是由所有的样本误差之和除以样本的个数得到的。由于图中只画出了6个特征,因此第 i 个样本的误差是

e_{i}=\sum_{j=1}^{6}(x_{i j}-r_{i j})^{2}/6

如果使用已经训练好的 RNN 模型,异常值的分数就可以定义为重构误差(reconstruction error)。

下面简要介绍一下 RNN 模型是如何构建的:

rnn2

根据上图所示,左边的是输入层,右边的输出层。假设第 k 层中第 i 个神经元的输出是 S_{k}(I_{ki}),其中I_{ki} 表示第 k 层中第 i 个神经元的输入,S_{k} 表示第 k 层使用的激活函数。那么

\theta=I_{ki}=\sum_{j=0}^{L_{k-1}}w_{kij}Z_{(k-1)j}

其中 Z_{kj} 是第 k 层中第 j 个神经元的输出,L_{k} 是第 k 层神经元的个数。对于第二层和第四层而言 (k=2,4),激活函数选择为

S_{k}(\theta)=tanh(a_{k}\theta)  \text{ for } k=2 \text{ or } 4,

这里的 a_{k} 是一个参数,通常假设为1。对于中间层 (k=3) 而言,激活函数是一个类阶梯 (step-like) 函数。有两个参数 N 和a_{3},N 表示阶梯的个数,a_{3} 表示从这一层到下一层的提升率 (transition rate):

S_{3}(\theta)=\frac{1}{2}+\frac{1}{4}\sum_{j=1}^{N-1}tanh(a_{3}(\theta-\frac{j}{N})).

在这里可以假设 a_{3}=100N=4. 那么 S_{3}(\theta) 就如下图所示。

S3

第三层的激活函数的输出就变成了 N 个离散的变量:0, 1/(N-1), 2/(N-1),…,1。这个阶梯型的激活函数是把第三层的连续输入值变成了一批离散的值。也就意味着把样本映射到了 N 个簇,那么 RNN 就可以计算出单个的异常点和一小簇的异常点。

备注:

根据上面的分析,可以看出如果按照以上算法,则不能使用反向传播算法来训练模型,原因是 S_{3}(\theta) 的导数不能够通过它的取值来表示。这一点与 tanh 函数,\sigma 函数是不一致的,因为 tanh^{'}(x) = 1-tanh^{2}(x) 和\sigma^{'}(x)=\sigma(x)(1-\sigma(x))。因此有学者指出 [1],使用三个隐藏层是没有必要的,使用1个或者2个隐藏层的神经网络也能够得到类似的结果;同样,没有必要使用S_{3}(\theta) 这样类型的阶梯函数,使用传统的\sigma 激活函数也能够得到类似的结果。并且S_{3}(\theta) 是一个 step-like 函数,很多地方的导数取值都是接近于零的。

后向传播算法:

一般来说,为了训练神经网络模型,需要使用后向传播算法(back propagation),也简称为 BP 算法,或者误差逆传播算法(error back propagation)。在本文中,仅针对最简单的 RNN 模型介绍如何使用 BP 算法进行模型训练,至于多层的神经网络模型或者其他的神经网络模型,方法则是完全类似的。

rnn3

给定训练集合 D=\{(\bold{x}_{1},\bold{y}_{1}),...,(\bold{x}_{m},\bold{y}_{m})\},其中有 m 个样本,并且输入和输出是一样的值。换句话说,也就是 n 维向量

\bold{x}_{i}=\bold{y}_{i}\in\mathbb{R}^{n} \text{ for all } 1\leq i\leq m.

换句话说,输入样例是由 n 个属性描述,输出的结果也是 n 个属性。隐藏层只有一个,隐藏层的神经元个数是 q=[(n+1)/2],这里的 [] 表示 Gauss 取整函数。输出层第 j 个神经元的阈值使用\theta_{j} 表示,隐藏层第 h 个神经元的阈值使用\gamma_{h} 表示。输入层第 i 个神经元与隐藏层第 h 个神经元之间的连接权重是v_{i h}, 隐藏层第 h 个神经元与输出层第 j 个神经元之间的连接权重是w_{h j}, 其中1\leq i \leq n, 1\leq h \leq q, 1\leq j \leq n.

记隐藏层第 h 个神经元接收到的输入为

\alpha_{h} = \sum_{i=1}^{n}v_{i h}x_{i} \text{ for all } 1\leq h \leq q.

写成矩阵形式就是:

(\alpha_{1},\cdot\cdot\cdot,\alpha_{q})=(x_{1},\cdot\cdot\cdot,x_{n})\begin{bmatrix} v_{11} & ... & v_{1q} \\ ... & ... & ... \\ v_{n1} & ... & v_{nq} \end{bmatrix}.

记输出层第 j 个神经元接收到的输入为

\beta_{j}=\sum_{h=1}^{q}w_{h j}b_{h} \text{ for all } 1\leq j\leq n,

其中 b_{h} 是隐藏层第 h 个神经元的输出,b_{h} = f(\alpha_{h}-\gamma_{h}) \text{ for all } 1\leq h \leq q,f 是激活函数。写成矩阵形式就是:

(\beta_{1},\cdot\cdot\cdot,\beta_{n})=(b_{1},\cdot\cdot\cdot,b_{q})\begin{bmatrix} w_{11} & ... & w_{1n} \\ ... & ... & ... \\ w_{q1} & ... & w_{qn} \end{bmatrix}.

输出层第 j 个神经元的输出是 f(\beta_{j}-\theta_{j}), 其中1\leq j \leq n.

下面可以假定激活函数都使用 f(x)=1/(1+\exp(-x)), 那么直接通过导数计算可以得到f^{'}(x)=f(x)(1-f(x)).

对于训练集 (\bold{x}_{k},\bold{y}_{k}), 通过神经网络得到的输出是\hat{\bold{y}}_{k}=(\hat{y}_{k1},...,\hat{y}_{kn}), 并且 \hat{y}_{kj} = f(\beta_{j}-\theta_{j}) 对于1\leq j \leq n 都成立。那么神经网络在训练集(\bold{x}_{k},\bold{y}_{k}) 的均方误差是

E_{k} =\frac{1}{2}\sum_{j=1}^{n}(\hat{y}_{kj}-y_{kj})^{2},

其中 \bold{y}_{k}=(y_{k1},...,y_{kn}). 整体的误差是

E = \frac{1}{m}\sum_{k=1}^{m}E_{k} = \frac{1}{2m}\sum_{k=1}^{m}\sum_{j=1}^{n}(\hat{y}_{kj}-y_{kj})^{2}

标准 BP 算法:

网络中有 个参数需要确定:输入层到隐藏层的 n*q 个权重值,隐藏层到输出层的 n*q 个权重值,q个隐层神经元的阈值,n 个输出层神经元的阈值。BP 算法是一个迭代学习算法,在迭代的每一轮采用了梯度下降法来进行参数的更新。任意参数的更新规则是

v \leftarrow v+\Delta v.

标准 BP 算法是根据每一个 E_{k} 来获得更新规则,下面来推导每一个参数的更新规则。对于1\leq h \leq q, 1\leq j \leq n, 计算梯度

\Delta w_{hj} = -\eta \frac{\partial E_{k}}{\partial w_{hj}},

注意到 w_{hj} 先影响到第 j 个输出层神经元的输入值\beta_{j}, 再影响到第 j 个输出层神经元的输出值\hat{y}_{kj},最后影响到E_{k},根据高等数学的链式法则可以得到

\frac{\partial E_{k}}{\partial w_{hj}} = \frac{\partial E_{k}}{\partial \hat{y}_{kj}} \cdot \frac{\partial \hat{y}_{kj}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}}

根据定义 \beta_{j}=\sum_{h=1}^{q}w_{hj}b_{h} 可以得到\frac{\partial \beta_{j}}{\partial w_{hj}}=b_{h} 对于 1\leq j \leq n 都成立。

根据定义 E_{k}=\frac{1}{2}\sum_{j=1}^{n}(\hat{y}_{kj}-y_{kj})^{2} 可以得到 \frac{\partial E_{k}}{\partial \hat{y}_{kj}}=(\hat{y}_{kj}-y_{kj}).

根据定义 \hat{y}_{kj}=f(\beta_{j}-\theta_{j}) 和f^{'}(x)=f(x)\cdot(1-f(x)) 可以得到\frac{\partial \hat{y}_{kj}}{\partial \beta_{j}}=f^{'}(\beta_{j}-\theta_{j})=f(\beta_{j}-\theta_{j})\cdot(1-f(\beta_{j}-\theta_{j}))=\hat{y}_{kj}\cdot (1-\hat{y}_{kj}).

所以可以计算出对于 1\leq h \leq q, 1\leq j \leq n, 有

\frac{\partial E_{k}}{\partial w_{hj}} = (\hat{y}_{kj}-y_{kj})\cdot\hat{y}_{kj}\cdot(1-\hat{y}_{kj})\cdot b_{h}

如果假设

g_{j}=-\frac{\partial E_{k}}{\partial \beta_{j}}=-\frac{\partial E_{k}}{\partial \hat{y}_{kj}}\cdot \frac{\hat{y}_{kj}}{\partial \beta_{j}}

那么可以得到

g_{j}=\hat{y}_{kj}\cdot(1-\hat{y}_{kj})\cdot(y_{kj}-\hat{y}_{kj})

因此对于 1\leq h \leq q, 1\leq j \leq n, 可以得到\Delta w_{hj}=\eta g_{j}b_{h}.

根据类似的想法,有

\Delta \theta_{j}=-\eta\cdot\frac{\partial E_{k}}{\partial \theta_{j}}, \Delta v_{ih}=-\eta\cdot\frac{\partial E_{k}}{\partial v_{ih}}, \Delta \gamma_{h}=-\eta\cdot\frac{\partial E_{k}}{\partial \gamma_{h}}.

逐个计算:

\frac{\partial E_{k}}{\partial \theta_{j}}=\frac{\partial E_{k}}{\partial \hat{y}_{kj}}\cdot\frac{\partial\hat{y}_{kj}}{\partial\theta_{j}}=(\hat{y}_{kj}-y_{kj})\cdot(-1)\cdot f^{'}(\beta_{j}-\theta_{j})=(y_{kj}-\hat{y}_{kj})\cdot\hat{y}_{kj}\cdot(1-\hat{y}_{kj})=g_{j}

\frac{\partial E_{k}}{\partial v_{ih}}=\frac{\partial E_{k}}{\partial\alpha_{h}}\cdot\frac{\partial\alpha_{h}}{\partial v_{ih}}=\frac{\partial E_{k}}{\partial b_{h}}\cdot\frac{\partial b_{h}}{\partial \alpha_{h}}\cdot\frac{\partial\alpha_{h}}{\partial v_{ih}}

由于

\frac{\partial \alpha_{h}}{\partial v_{ih}}=x_{ki}

\frac{\partial b_{h}}{\partial\alpha_{h}}=f^{'}(\alpha_{h}-\gamma_{h})=f(\alpha_{h}-\gamma_{h})\cdot(1-f(\alpha_{h}-\gamma_{h}))=b_{h}\cdot(1-b_{h})

\frac{\partial E_{k}}{\partial b_{h}}=\sum_{j=1}^{n}\frac{\partial E_{k}}{\partial \beta_{j}}\cdot\frac{\partial \beta_{j}}{\partial b_{h}}=\sum_{j=1}^{n}(-g_{j})\cdot w_{hj}

所以,

\Delta v_{ih}=\eta(\sum_{j=1}^{n}g_{j}w_{hj})\cdot b_{h}\cdot (1-b_{h})x_{ki} = \eta e_{h}x_{ki}, 其中 e_{h}=-\partial E_{k}/\partial\alpha_{h}=(\sum_{j=1}^{n}g_{j}w_{hj})\cdot b_{h}\cdot(1-b_{h}).

\Delta \gamma_{h}=(-\eta)\cdot\frac{\partial E_{k}}{\partial\gamma_{h}}=(-\eta)\cdot\frac{\partial E_{k}}{\partial b_{h}}\cdot\frac{\partial b_{h}}{\partial\gamma_{h}}=\eta\cdot(\sum_{j=1}^{n}g_{j}w_{hj})\cdot(-1)\cdot f^{'}(\alpha_{h}-\gamma_{h})=(-\eta)\cdot(\sum_{j=1}^{n}g_{j}w_{hj})\cdot b_{h}\cdot(1-b_{h})=(-\eta)\cdot e_{h} .

整理之后,任意参数 v 的更新式子是 v\leftarrow v+\Delta v, 并且更新的规则如下:

\Delta w_{hj}=\eta g_{j}b_{h} \text{ for all } 1\leq j\leq n, 1\leq h \leq q,

\Delta \theta_{j}=-\eta g_{j} \text{ for all } 1\leq j\leq n,

\Delta v_{ih}=\eta e_{h}x_{ki} \text{ for all } 1\leq i\leq n, 1\leq h\leq q,

\Delta \gamma_{h}=-\eta e_{h} \text{ for all } 1\leq h\leq q,

其中学习率 \eta\in(0,1) 控制着算法每一轮迭代中的更新步长,若步长太大则容易振荡,太小则收敛速度过慢,需要人工调整学习率。 对每个训练样例,BP 算法执行下面的步骤:先把输入样例提供给输入层神经元,然后逐层将信号往前传,直到计算出输出层的结果;然后根据输出层的误差,再将误差逆向传播至隐藏层的神经元,根据隐藏层的神经元误差来对连接权和阈值进行迭代(梯度下降法)。该迭代过程循环进行,直到达到某个停止条件为止。

标准 BP 算法的训练流程:
输入:训练集合 D={(\bold{x}_{k},\bold{y}_{k})}_{k=1}^{m} 和学习率 \eta.
过程:
1. 在 (0,1) 范围内随机神经网络中的所有连接权重和阈值
2. repeat
for all (\bold{x}_{k},\bold{y}_{k}) do
根据当前参数,计算出当前的样本输出 \bold{y}_{k}
计算输出层神经元的梯度项 g_{j}
计算隐藏层神经元的梯度项 e_{h}
更新连接权重 w_{hj}, v_{ih} 与阈值\theta_{j},\gamma_{h}
end for
3. 达到停止条件
输出:链接权与阈值都确定的神经网络模型

累积 BP 算法:

BP 算法的目的是最小化训练集上的累计误差 E=\sum_{k=1}^{m}E_{k}/m, 其中 m 是训练集合中样本的个数。不过,标准的 BP 算法每次仅针对一个训练样例更新连接权重和阈值,也就是说,标准 BP 算法的更新规则是基于单个的 E_{k} 推导而得到的。通过类似的计算方法可以推导出累计误差的最小化更新规则,那就得到了累计误差逆传播(accumulate error backpropagation)算法。标准 BP 算法需要进行更多次的迭代,并且参数的更新速度快,累积 BP 算法必须扫描一次训练集合才会进行一次参数的更新,而且累计误差下降到一定的程度以后 ,进一步下降就会明显变慢,此时标准 BP 算法往往会更快的得到较好的解,尤其是训练集合大的时候。

训练方法:

(1)把数据集合的每一列都进行归一化;

(2)选择 70% 的数据集合作为训练集合,30% 的数据集合作为验证集合。或者 训练集合 : 验证集合 = 8 : 2,这个需要根据情况而定。

(3)随机生成一个三层的神经网络结构,里面的权重都是随机生成,范围在 [0,1] 内。输入层的数据和输出层的数据保持一致,并且神经网络中间层的节点个数是输入层的一半。

(4)使用后向传播算法(back-propagation)来训练模型。为了防止神经网络的过拟合,通常有两种策略来防止这个问题。(i)第一种策略是“早停”(early stopping):当训练集合的误差降低,但是验证集合的误差增加时,则停止训练,同时返回具有最小验证集合误差的神经网络;(ii)第二种策略是“正则化”(regularization):基本思想是在误差目标函数中增加一个用于描述网络复杂度的部分,例如链接权和阀值的平方和。

测试效果:

其中蓝色的点表示正常点,红色的点表示被 RNN 算法标记的异常点。

rnn_result1

rnn_result2

 

6. One Class SVM算法

    One Class SVM也是属于支持向量机大家族的,但是它和传统的基于监督学习的分类回归支持向量机不同,它是无监督学习的方法,也就是说,它不需要我们标记训练集的输出标签。

    那么没有类别标签,我们如何寻找划分的超平面以及寻找支持向量呢?One Class SVM这个问题的解决思路有很多。这里只讲解一种特别的思路SVDD, 对于SVDD来说,我们期望所有不是异常的样本都是正类别,同时它采用一个超球体而不是一个超平面来做划分,该算法在特征空间中获得数据周围的球形边界,期望最小化这个超球体的体积,从而最小化异常点数据的影响。

     假设产生的超球体参数为中心 o和对应的超球体半径 r>0 ,超球体体积 V(r)被最小化,中心o是支持向量的线性组合;跟传统SVM方法相似,可以要求所有训练数据点 xi到中心的距离严格小于 r,但同时构造一个惩罚系数为 C的松弛变量 ξi,优化问题如下所示:

和之前讲的支持向量机系列类似的求解方法,在采用拉格朗日对偶求解之后,可以判断新的数据点 z 是否在类内,如果z到中心的距离小于或者等于半径r,则不是异常点,如果在超球体以外,则是异常点。OneClassSVM也支持核函数,所以普通SVM里面的调参思路在这里也适用。 

7. Isolation Forest算法

    Isolation Forest(以下简称IForest)是周志华老师的学生提出来的,主要是利用集成学习的思路来做异常点检测,目前几乎成为异常点检测算法的首选项,它是随机森林大家族的一员。

    算法本身并不复杂,主要包括第一步训练构建随机森林对应的多颗决策树,这些决策树一般叫iTree,第二步计算需要检测的数据点x最终落在任意第t颗iTree的层数ht(x)。然后我们可以得出x在每棵树的高度平均值h(x)。第三步根据h(x)判断x是否是异常点。

    对于第一步构建决策树的过程,方法和普通的随机森林不同。

    首先采样决策树的训练样本时,普通的随机森林要采样的样本个数等于训练集个数。但是iForest不需要采样这么多,一般来说,采样个数要远远小于训练集个数。原因是我们的目的是异常点检测,只需要部分的样本我们一般就可以将异常点区别出来了。

    另外就是在做决策树分裂决策时,由于我们没有标记输出,所以没法计算基尼系数或者和方差之类的划分标准。这里我们使用的是随机选择划分特征,然后在基于这个特征再随机选择划分阈值,进行决策树的分裂。直到树的深度达到限定阈值或者样本数只剩一个。

    第二步计算要检测的样本点在每棵树的高度平均值h(x)。首先需要遍历每一颗iTree,得到检测的数据点x最终落在任意第t颗iTree的数层数ht(x)。这个ht(x)代表的是树的深度,也就是离根节点越近,则ht(x)越小,越靠近底层,则ht(x)越大,根节点的高度为0.

    第三步是据h(x)判断x是否是异常点。我们一般用下面的公式计算x的异常概率分值:

, s(x,m)的取值范围是[0,1],取值越接近于1,则是异常点的概率也越大。其中,m为样本个数。的表达式为: 

从s(x,m)表示式可以看出,如果高度h(x)→0, 则s(x,m)→1,即是异常点的概率是100%,如果高度h(x)→m−1, 则s(x,m)→0,即不可能是异常点。如果高度h(x)→c(m), 则s(x,m)→0.5,即是异常点的概率是50%,一般我们可以设置$s(x,m)的一个阈值然后去调参,这样大于阈值的才认为是异常点。

   IForest目前是异常点检测最常用的算法之一,它的优点非常突出,它具有线性时间复杂度。因为是随机森林的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。对于目前大数据分析的趋势来说,它的好用是有原因的。

    但是IForest也有一些缺点,比如不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度和该维度的随机一个特征,建完树后仍然有大量的维度没有被使用,导致算法可靠性降低。此时推荐降维后使用,或者考虑使用One Class SVM。

    另外iForest仅对即全局稀疏点敏感,不擅长处理局部的相对稀疏点 ,这样在某些局部的异常点较多的时候检测可能不是很准。

    而One Class SVM对于中小型的数据分析,尤其是训练样本不是特别海量的时候用起来经常会比iForest顺手,因此比较适合做原型分析。

8.基于密度的异常检测

在中等高维数据集上执行异常值检测的另一种有效方法是使用局部异常因子(Local Outlier Factor ,LOF)算法。用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。 
   
  下面介绍LOF算法的相关定义: 
  1) d(p,o):两点p和o之间的距离; 
  2) k-distance:第k距离 
    对于点p的第k距离dk(p)定义如下: 
    dk(p)=d(p,o),并且满足: 
      a) 在集合中至少有不包括p在内的k个点o,∈C{x≠p}, 满足d(p,o,)≤d(p,o); 
      b) 在集合中最多有不包括p在内的k−1个点o,∈C{x≠p},满足d(p,o,)<d(p,o); 
    p的第k距离,也就是距离p第k远的点的距离,不包括p,如图3。 
     
  3) k-distance neighborhood of p:第k距离邻域 
    点p的第k距离邻域Nk(p),就是p的第k距离即以内的所有点,包括第k距离。 
    因此p的第k邻域点的个数 |Nk(p)|≥k。 
  4) reach-distance:可达距离 
    点o到点p的第k可达距离定义为: 
    reach−distancek(p,o)=max{k−distance(o),d(p,o)}
    也就是,点o到点p的第k可达距离,至少是o的第k距离,或者为o、p间的真实距离。 
    这也意味着,离点o最近的k个点,o到它们的可达距离被认为相等,且都等于dk(o)。 
    如图4,o1到p的第5可达距离为d(p,o1),o2到p的第5可达距离为d5(o2)。 


  5) local reachability density:局部可达密度 
    点p的局部可达密度表示为:

    表示点p的第k邻域内点到p的平均可达距离的倒数。 
    注意,是p的邻域点Nk(p)到p的可达距离,不是p到Nk(p)的可达距离,一定要弄清楚关系。并且,如果有重复点,那么分母的可达距离之和有可能为0,则会导致lrd变为无限大,下面还会继续提到这一点。 
    这个值的含义可以这样理解,首先这代表一个密度,密度越高,我们认为越可能属于同一簇,密度越低,越可能是离群点。如果p和周围邻域点是同一簇,那么可达距离越可能为较小的dk(o),导致可达距离之和较小,密度值较高;如果p和周围邻居点较远,那么可达距离可能都会取较大值d(p,o),导致密度较小,越可能是离群点。 
  6) local outlier factor:局部离群因子 
    点p的局部离群因子表示为:

    表示点p的邻域点Nk(p)的局部可达密度与点p的局部可达密度之比的平均数。 
    如果这个比值越接近1,说明p的其邻域点密度差不多,p可能和邻域同属一簇;如果这个比值越小于1,说明p的密度高于其邻域点密度,p为密集点;如果这个比值越大于1,说明p的密度小于其邻域点密度,p越可能是异常点。 
  现在概念定义已经介绍完了,现在再回过头来看一下lof的思想,主要是通过比较每个点p和其邻域点的密度来判断该点是否为异常点,如果点p的密度越低,越可能被认定是异常点。至于密度,是通过点之间的距离来计算的,点之间距离越远,密度越低,距离越近,密度越高,完全符合我们的理解。而且,因为lof对密度的是通过点的第k邻域来计算,而不是全局计算,因此得名为“局部”异常因子,这样,对于图1的两种数据集C1和C2,lof完全可以正确处理,而不会因为数据密度分散情况不同而错误的将正常点判定为异常点。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值