解决“Could not load dynamic library ‘libcusolver.so.10‘”问题

问题描述

在Python环境中检查tensorflow-gpu是否可用时,返回FLASE

tf.test.is_gpu_available()

报错信息:

Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/TensorRT-8.0.3.4/lib:/usr/local/cuda-11.2/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64

问题分析

该报错是无法加载动态库“libcusolver.so.10”,首先需要找到这个文件,然后在该文件位置把对应软链接指过去即可

解决方法

首先找到libcusolver.so.10文件位置

find / -name libcusolver.so.10

然后在该文件位置下执行软链接

ln -s libcusolver.so.11 libcusolver.so.10

即可

“could not load dynamic library 'libcupti.so.11.2'” 表示无法加载动态库 'libcupti.so.11.2'。 这通常是因为系统或应用程序找不到所需的库文件或库文件版本不兼容。要解决这个问题,你可以尝试以下方法: 1. 确认库文件是否存在:首先确认 'libcupti.so.11.2' 动态库文件是否存在于你的系统中。你可以使用命令 `ls /path/to/libcupti.so.11.2` 来检查文件是否存在。 2. 检查库文件路径:如果库文件存在,但系统无法找到它,你可以尝试在 LD_LIBRARY_PATH 环境变量中添加库文件的路径。例如,执行以下命令:`export LD_LIBRARY_PATH=/path/to/library:$LD_LIBRARY_PATH`,将 /path/to/library 替换为实际的库文件路径。 3. 检查库文件版本兼容性:如果库文件版本不兼容,你可能需要查找适用于你的系统的兼容版本。可以尝试从官方网站或软件开发者处获取更新的库文件版本,并按照他们的说明进行安装和配置。 4. 更新相关软件:另一个解决方法是确保你的系统和相关软件都是最新的。尝试升级你的操作系统、驱动程序和应用程序,并重试加载动态库。 5. 寻求帮助:如果以上方法都不能解决问题,建议寻求相关领域专家或开发者的帮助。他们可能能够提供更具体的解决方案或建议。 这些是可能解决问题的常见方法,但具体解决方案取决于你的操作系统、应用程序和库文件的配置。因此,建议在尝试这些方法之前仔细阅读相关文档或寻求专业帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值