想做一个二维变量数学期望实验, 查看若干资料终于找到方法
先看这篇文章熟悉一下R的函数
http://www.cyclismo.org/tutorial/R/tables.html
构造数据
通过下面的函数构造了,正态分布和泊松分布的两列数据
A <- data.frame(a=round(rnorm(10,20,9)), b=rpois(10, lambda=10))
> A <- data.frame(a=round(rnorm(10,20,9)), b=rpois(10, lambda=10))
> A
a b
1 22 14
2 21 7
3 20 11
4 20 10
5 12 13
6 17 15
7 15 9
8 3 8
9 14 12
10 3 9
如何理解这个数据:
可以这样来, 就是说我拿了一个零件它的长是A,宽是B, 我在a, b 填入这些数据, 我总共查看了10个零件, 就得到上面这些数据
这样这批零件矩形的长服从正态分布 均值是20, 方差是9, 而宽服从泊松分布 lambda是 10 (我们对正态分布强行取整)
构造频率表
用 mytable <-table(A[[1]],A[[2]]) 直接得到
> mytable <-table(A[[1]],A[[2]])
> mytable
7 8 9 10 11 12 13 14 15
3 0 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 1 0 0 0
15 0 0