计算机毕业设计Python+DeepSeek-R1大模型农产品价格预测+可视化+爬虫 农产品推荐系统 机器学习 深度学习 农产品可视化(LW文档+PPT+代码+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告:Python+DeepSeek-R1大模型在农产品价格预测中的应用与可视化+爬虫技术

一、引言

1.1 研究背景

随着信息技术的飞速发展,大数据和人工智能技术在农业领域的应用日益广泛。农产品价格预测作为农业市场分析的重要环节,对于指导农业生产、优化资源配置、提高农民收入具有重要意义。然而,传统的农产品价格预测方法往往依赖于经验判断和简单的统计分析,预测精度和实时性有待提高。

近年来,深度学习技术的兴起为农产品价格预测提供了新的思路和方法。DeepSeek-R1大模型作为一种先进的深度学习模型,在自然语言处理、计算机视觉等多个领域取得了显著成果。将其应用于农产品价格预测,有望提高预测的准确性和实时性。

1.2 研究意义

本研究旨在探索Python结合DeepSeek-R1大模型在农产品价格预测中的应用,通过爬虫技术获取实时数据,并利用数据可视化技术展示预测结果。这不仅有助于提升农产品价格预测的精度和实时性,还能为农业生产者、经销商和消费者提供更加科学的决策依据。

1.3 研究问题的提出

  • 如何利用Python爬虫技术高效获取农产品价格数据?
  • 如何将DeepSeek-R1大模型应用于农产品价格预测?
  • 如何实现预测结果的可视化展示?

二、文献综述

2.1 农产品价格预测研究现状

国内外学者在农产品价格预测方面进行了大量研究。国内研究主要关注农产品价格的形成机制、影响因素及预测方法。例如,灰色预测方法、ARIMA模型、随机森林模型等被广泛应用于农产品价格预测。然而,这些方法在应对复杂多变的农产品市场时,仍存在一定的局限性。

2.2 深度学习与农产品价格预测

深度学习技术因其强大的数据处理和模式识别能力,在农产品价格预测中展现出巨大潜力。Prophet模型、LSTM神经网络等深度学习模型已被用于农产品价格预测,并取得了较好的效果。然而,将DeepSeek-R1大模型应用于农产品价格预测的研究尚不多见。

2.3 数据可视化与爬虫技术

数据可视化技术能够将复杂的数据以直观的方式呈现出来,有助于决策者快速理解数据背后的信息。Python中的PyEcharts、Matplotlib等库为数据可视化提供了强大的支持。同时,爬虫技术作为获取网络数据的重要手段,在农产品价格预测中发挥着至关重要的作用。

三、研究内容与目标

3.1 研究内容

  • 数据获取:利用Python爬虫技术从农业信息网站获取农产品价格数据。
  • 模型构建:基于DeepSeek-R1大模型构建农产品价格预测模型。
  • 数据预处理:对获取的数据进行清洗、归一化等预处理操作。
  • 模型训练与预测:使用预处理后的数据对模型进行训练,并进行价格预测。
  • 结果可视化:利用数据可视化技术将预测结果进行直观展示。

3.2 研究目标

  • 探索Python爬虫技术在农产品价格数据获取中的应用。
  • 研究DeepSeek-R1大模型在农产品价格预测中的效果。
  • 实现预测结果的可视化展示,提高决策的科学性。

四、研究方法

4.1 数据获取方法

使用Python的requests、BeautifulSoup等库编写爬虫脚本,定时从农业信息网站抓取农产品价格数据。同时,考虑使用Selenium等工具应对动态网页的抓取需求。

4.2 模型构建方法

基于DeepSeek-R1大模型构建农产品价格预测模型。具体步骤如下:

  • 加载预训练模型:利用transformers库加载DeepSeek-R1预训练模型。
  • 数据预处理:使用Pandas库对数据进行清洗、归一化等预处理操作。
  • 模型训练:将预处理后的数据输入模型进行训练。
  • 价格预测:使用训练好的模型进行农产品价格预测。

4.3 数据可视化方法

利用PyEcharts、Matplotlib等库将预测结果进行可视化展示。具体展示形式包括折线图、柱状图等,以直观反映农产品价格的变化趋势。

五、技术路线与可行性分析

5.1 技术路线

  1. 数据获取:编写爬虫脚本,从农业信息网站抓取农产品价格数据。
  2. 数据预处理:对数据进行清洗、归一化等预处理操作。
  3. 模型构建与训练:基于DeepSeek-R1大模型构建预测模型,并进行训练。
  4. 价格预测:使用训练好的模型进行农产品价格预测。
  5. 结果可视化:利用数据可视化技术将预测结果进行展示。

5.2 可行性分析

  • 技术可行性:Python作为强大的编程语言,具有丰富的第三方库支持;DeepSeek-R1大模型在多个领域取得了显著成果,为农产品价格预测提供了有力支持。
  • 数据可行性:农业信息网站上存在大量公开的农产品价格数据,为本研究提供了充足的数据来源。
  • 应用可行性:本研究成果可为农业生产者、经销商和消费者提供科学的决策依据,具有广泛的应用前景。

六、预期成果与创新点

6.1 预期成果

  • 构建一套基于Python和DeepSeek-R1大模型的农产品价格预测系统。
  • 实现农产品价格数据的实时获取和预处理。
  • 提供准确的农产品价格预测结果,并进行可视化展示。

6.2 创新点

  • 模型创新:首次将DeepSeek-R1大模型应用于农产品价格预测领域,探索其预测效果。
  • 技术融合:结合Python爬虫技术和数据可视化技术,实现农产品价格数据的实时获取和预测结果的直观展示。

七、研究计划与时间表

7.1 研究计划

  1. 第一阶段(1-2个月):文献调研与数据获取
    • 调研国内外农产品价格预测研究现状。
    • 编写爬虫脚本,获取农产品价格数据。
  2. 第二阶段(3-4个月):模型构建与训练
    • 基于DeepSeek-R1大模型构建预测模型。
    • 对获取的数据进行预处理和模型训练。
  3. 第三阶段(5-6个月):价格预测与结果可视化
    • 使用训练好的模型进行农产品价格预测。
    • 利用数据可视化技术将预测结果进行展示。
  4. 第四阶段(7-8个月):系统测试与优化
    • 对构建的预测系统进行测试,评估预测精度和实时性。
    • 根据测试结果对系统进行优化和完善。

7.2 时间表

时间段研究内容
1-2个月文献调研与数据获取
3-4个月模型构建与训练
5-6个月价格预测与结果可视化
7-8个月系统测试与优化

八、结论

本研究旨在探索Python结合DeepSeek-R1大模型在农产品价格预测中的应用,通过爬虫技术获取实时数据,并利用数据可视化技术展示预测结果。预期成果将为农业生产者、经销商和消费者提供更加科学的决策依据,推动农业市场的健康发展。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值