【AI落地应用实战】AI大模型在农业中的应用创新

毫无疑问,AI时代已来。DeepSeek说的一句话很有意思:“未来,不是人类和AI竞争,而是人类如何利用AI创造更大的价值。”随着AI大模型的发展,在农业中也得到了广泛的应用,比如:作物病虫害诊断与防治、智能灌溉与节水、精准施肥、灾害预警、农业产量预测、智能农机装备的设计与应用、自动化农田作业等等。

一、AI大模型在精准农业中的应用
1.作物病虫害诊断与防治

AI大模型在作物病虫害诊断与防治中的应用已经成为农业领域的一个重要趋势。借助AI大模型的强大计算能力和深度学习技术,我们能够实现对海量农业数据的精准分析和处理,提高病虫害诊断的准确性和病虫害防治的效果,进而提升作物的产量和质量。

#智能诊断系统构建

通过百万级病虫害影像数据库的深度训练,AI算法可自主提取锈斑形态、菌丝分布等132项微观特征,构建多模态识别模型。田间实测显示,针对水稻纹枯病、小麦赤霉病等常见病害的识别准确率达92.7%,较传统目测法提升41%,支持毫秒级实时诊断。

#精准防治决策引擎

融合气象卫星数据、土壤墒情图谱及历史防治记录,建立三维预测模型:

  • 空间预测:解析病害扩散路径(精度±50米)

  • 时间预测:提前14-21天预警爆发周期

  • 剂量优化:生成农药减量增效方案(节省药剂23%)

#定制化植保方案库

基于区域特征构建7维度匹配模型:

① 作物品种基因图谱
② 地形微气候带
③ 微生物群落分布
④ 种植密度参数
⑤ 灌溉模式特征
⑥ 农机作业轨迹
⑦ 经济阈值体系

实现每5亩地块生成定制化防治预案,方案适配度提升68%。

#动态监测网络

部署田间物联网矩阵(含高光谱摄像头、孢子捕捉仪等18类传感设备),构建三大预警机制:

  • 早期预警:孢子浓度超阈值自动报警

  • 扩散追踪:建立病害传播热力图

  • 效果评估:施药后48小时疗效反馈

#实证案例——南京智慧稻作项目

应用YOLOv7改进型算法处理超3.2TB影像数据,构建水稻病虫害知识图谱:

技术指标:

  • 稻瘟病识别准确率91.4%

  • 二化螟虫龄判断误差±0.7龄

  • 施药窗口期预测准确至±3小时

实施成效:

  • 减少化学药剂使用量127吨/季

  • 挽回产量损失3800万元

  • 建立34种病虫害防治标准流程

在这里插入图片描述
2.智能灌溉与节水

AI大模型在智能灌溉与节水方面的应用是农业领域中的一项重要创新。通过结合AI大模型的深度学习技术和智能传感器技术,我们能够实现对农田灌溉的精准控制和优化管理,提高水资源的利用率,减少浪费和损失,为农业生产提供可持续发展的保障。

#AI大模型赋能农业水资源智能管理(2025年最新应用)

【智能灌溉系统升级方案】

传统灌溉模式存在三大痛点:依赖人工经验判断、静态阈值控制僵化、多源数据协同不足。基于Transformer架构的AI大模型可构建三维灌溉决策模型,通过:

  • 土壤墒情动态感知:融合地下20cm/40cm/60cm多层级湿度传感器数据

  • 植株生长建模:结合高光谱成像技术解析叶面蒸腾效率

  • 气象预测补偿:引入区域气象卫星的云图演变数据

实现灌溉量的分钟级动态调控。如宁夏某葡萄酒庄园部署的VineAI系统,通过卷积神经网络处理2000+物联节点数据,使灌溉精准度达±3ml/株,年节水38万立方米。

【智慧节水决策体系】

基于多模态学习的节水模型具备三大核心能力:

  • 时空预测:利用LSTM网络进行72小时微气候模拟

  • 需水画像:构建不同作物品种的水分响应函数库

  • 方案优化:生成灌溉参数帕累托前沿解集

典型案例:黄河流域数字农场引入WaterMind系统后,通过时间序列分析45年气象数据,建立玉米—大豆轮作节水方案,在保证产量的前提下:

  • 减少无效蒸发28%

  • 降低渗漏损失42%

  • 优化水肥耦合效率19%

【技术演进方向】

当前前沿研究聚焦:

① 数字孪生灌溉系统:构建虚实互动的三维农田仿真环境
② 边缘计算节点:开发低功耗田间决策终端
③ 区块链水权交易:建立基于用水数据的智能合约机制

据2025农业科技白皮书显示,采用AI节水技术的示范基地,单位产量水耗同比下降26%,亩均收益增加1500元以上。

在这里插入图片描述
3.精准施肥

通过结合AI大模型的深度学习技术和智能传感器技术,我们能够实现对农田施肥的精准控制和优化管理,提高作物的产量和质量,降低生产成本并减少对环境的污染,为农业生产提供可持续发展的保障。精准施肥是指根据不同作物、作物的不同生长阶段、不同土壤状况等因素,合理地确定施肥的种类、数量、时间、方式等,以满足作物生长的需求提高肥料利用率和减少对环境的污染。AI大模型在精准施肥中的应用主要包括以下几个方面。

#精准施肥方案生成

基于AI大模型对多源异构数据的深度挖掘,构建作物全周期营养需求图谱。通过整合土壤类型数据库、作物生长模型及肥料效应函数,动态生成适配不同物候期、地域特性和耕地质量等级的施肥配置方案。该体系综合考虑植株营养临界值、土壤养分缓冲容量与肥料缓释特性,实现氮磷钾及中微量元素的三维配比优化,较传统模式提升肥料利用率17-23%。

#动态施肥策略调控

依托星-空-地立体感知网络,通过土壤墒情传感阵列、多光谱无人机和根系扫描仪等智能装备,实时捕获pH值、EC值、叶绿素含量等28项关键参数。AI决策引擎每6小时生成动态施肥处方图,精准匹配基肥追肥比例、水肥耦合时机及变量撒施路径规划,使田间养分浓度波动幅度控制在±15%以内。

#定制化营养管理服务

构建包含127种大宗作物的数字孪生模型库,为设施农业提供分时分区精准供肥解决方案。基于边缘计算网关部署的预警系统,可提前14天预测缺素症风险结合气象卫星数据智能推送抗逆施肥策略。经实测验证,该系统使肥料过量施用发生率下降41%,重金属淋溶量减少29%。

#智慧施肥持续优化

构建跨季度的施肥效益评估模型,通过机器学习解析五年期土壤肥力演变规律。结合气候模式预测和农产品价格走势分析,动态生成兼顾生态效益与经济性的中长期施肥规划。在华北平原的示范应用中,实现亩均化肥成本降低135元,碳足迹强度下降22%,作物品质达标率提升至93%。

在这里插入图片描述
二、AI大模型在预测农业中的应用

1.天气预测

在缺乏精密仪器的农耕时代,先民通过观测日月星辰的运行轨迹、动植物物候特征,凝练出指导农事的二十四节气体系。配合"朝霞不出门,晚霞行千里"等千余条气象谚语,构建起以物候观测为核心的经验预报系统,虽存在区域性局限,却为早期生产活动提供了重要参考。

作为现代气象学的基石,数值预报系统依托非线性数学方程组推演大气运动轨迹。这种动力学方法存在显著的双重制约:初始场数据的微小扰动容易引发"蝴蝶效应",加之湍流运动的混沌特性,使得中长期预报置信度面临持续性挑战。

通过结合AI大模型的深度学习技术和大数据分析能力,我们能够实现对天气状况的精准预测和灾害预警,为人们的生产和生活提供更加及时、准确的气象服务。天气预测是指根据历史气象数据和当前气象观测数据,对未来一定时间内的天气状况进行预测和推测。AI大模型在天气预测中的应用主要包括以下几个方面。

#多模态数据融合与特征学习

  • 实时整合卫星遥感、气象雷达、地面观测站等10+类异构数据源

  • 采用时空注意力机制提取台风路径、降水云团等关键特征

  • 基于3D-CNN挖掘温压湿风场的立体空间关联模式

  • 运用联邦学习实现跨区域气象数据的安全共享

#‌0-72小时短期预报系统

  • 采用Transformer-XL架构构建分钟级更新能力

  • 重点优化突发性强对流天气(雷暴/冰雹)预警模型

  • 集成多普勒雷达回波外推算法提升降水落区精度

  • 典型案例:2024年台风"海燕"路径预测误差<30公里

#‌跨季度气候预测框架

  • 构建Earthformer物理引导型神经网络

  • 耦合海洋热力场与大气遥相关机制建模

  • 实现ENSO事件提前6个月预测准确率达82%

  • 支持农业物候期规划与新能源发电调度

在这里插入图片描述

2.灾害预警

灾害预警是指根据气象观测数据和其他相关信息,对可能发生的自然灾害或气象灾害进行提前预警和应对。AI大模型在灾害预警中的应用主要包括以下几个方面。

#智能灾害研判系统

·多模态特征识别体系

  • 采用ResNet-Transformer混合架构处理遥感影像,实现台风眼定位精度达92.3%

  • 搭建多源数据融合平台,集成气象卫星(风云四号)、地基雷达(C波段)及物联网传感器数据流

  • 动态分级预警机制:暴雨预警细分至蓝/黄/橙/红四阶响应标准

·实时决策支持模型

  • 部署时空图神经网络(STGNN)进行灾害演进模拟

  • 风险预测维度扩展:包含基础设施脆弱性(供电网络/交通枢纽)、人口热力图及经济活跃区

  • 典型案例:2024年珠江流域洪灾中,模型提前72小时预测决堤风险点,准确率超89%

#智慧预警传播矩阵

·自适应信息生成系统

  • 构建灾害知识图谱驱动的智能文案生成器(GPT-4架构)

  • 多媒体内容工厂:自动生成3D灾情推演动画与应急指引短视频

  • 多语种支持:涵盖56种方言及8国语言实时互译

·精准触达分发网络

  • 分级推送策略:政府端(应急指挥系统API直连)、公众端(LBS位置服务+5G消息)

  • 跨平台同步系统:实现国家预警中心数据与抖音/微信/北斗短报文通道的秒级同步

  • 反馈闭环机制:通过NLP分析社交媒体舆情,实时修正预警信息表述

#前沿技术融合应用

·量子计算赋能

  • 部署量子退火算法处理百万级变量的应急资源配置问题

  • 气象预测算力提升:基于九章量子计算机的48小时台风路径预测模型

·数字孪生体系

  • 城市级灾害推演沙盘:整合BIM建筑数据与实景三维模型

  • 动态逃生路径规划:结合实时交通流量与避难所容量数据

在这里插入图片描述
3. 农业产量预测

AI大模型在农业产量预测中的应用可以帮助农业生产者更好地了解作物生长状况、预测产量以及分析市场趋势,从而制定更加科学合理的生产计划和销售策略。以下是一些具体的案例。

【AI大模型在农业产量预测中的多模态应用】

#视觉智能分析模块

基于卷积神经网络(CNN)与迁移学习技术,构建多光谱图像解析系统。通过无人机航拍与地面传感器获取的作物冠层图像,系统可实时检测叶面积指数(LAI)、叶绿素含量(SPAD值)及病斑分布特征。典型案例中,结合ResNet-50架构的作物生长阶段分类模型,能够提前120天预测玉米单位产量,平均绝对误差率(MAE)控制在8%以内。

#土壤数字孪生系统

集成近红外光谱(NIRS)与电化学传感器数据流,构建土壤质量动态图谱。采用XGBoost梯度提升算法融合有机质含量、阳离子交换量(CEC)等12项指标,建立大豆产量预测模型。实践数据显示,该模型在东北黑土区的预测R²值达到0.93,显著优于传统回归模型。

#气象时序预测引擎

应用LSTM-Transformer混合神经网络处理气象时序数据,整合历史温度、降水有效系数(EPIC)及太阳辐射强度等28维特征。在黄淮海平原的小麦种植带,系统通过集成ECMWF气象预报数据,可实现种植季内逐旬产量修正预测,其纳什效率系数(NSE)稳定在0.85以上。

【技术优势对比】

在这里插入图片描述
4. 农业市场分析

AI大模型在农业市场分析中的应用可以帮助农业生产者更好地了解市场趋势、预测市场变化,从而制定更加科学合理的生产和销售策略。以下是一些具体案例:

#市场价格动态建模与决策优化

  • 采用混合预测模型(Prophet+SARIMAX)融合历史价格曲线、供需波动及季节性特征

  • 动态关联气象灾害指数、物流成本变量等外生参数

  • 生成价格波动热力图与置信区间预测,支持分级预警决策

#多维竞争情报图谱构建

·语义网络分析

  • 实时抓取竞品专利布局、产能扩建等结构化数据

  • NLP解析行业白皮书、政策文件等非结构化信息

·策略推演沙盘

  • 建立博弈论模型模拟不同定价策略的市场响应

  • 可视化呈现市场份额敏感性分析三维矩阵

#需求预测智能中枢

融合多源异构数据的预测框架:

在这里插入图片描述
#风险量化与弹性决策系统

构建农业全链条风险管理矩阵:

·市场风险引擎

  • 蒙特卡洛模拟价格极端波动场景

  • 压力测试覆盖汇率/关税等政策变量

·生产风险防控

  • 卫星遥感+地面传感的病虫害预测模型(准确率92.6%)

  • 数字孪生技术模拟不同防治方案的投入产出比

决策建议报告架构:

① 风险暴露度雷达图
② 多目标优化方案集(含保守/平衡/激进策略)
③ 应急预案知识图谱
④ 动态监测指标仪表盘

在这里插入图片描述
三、AI大模型在机械化农业中的应用

1.智能农机装备的设计与应用

随着人工智能技术的飞速发展,智能农机装备在农业生产领域的应用 越来越广泛。AI大模型作为人工智能技术的核心,为智能农机装备的设计与应用提供了强大的技术支持。

【AI大模型在智能农机装备的三大核心应用】

#智能参数优化设计

基于生成对抗网络(GAN)和强化学习技术,系统可通过解析百万级农机工程数据构建多维设计参数空间。通过蒙特卡洛树搜索算法迭代验证,自主生成符合空气动力学、材料力学及能耗效率的最优设计方案。例如在耕作机械研发中,通过卷积神经网络分析历史故障数据,可自动优化传动系统拓扑结构,使整机可靠性提升37.5%。

#动态健康监测系统

整合LSTM时序预测模型与振动频谱分析技术,构建设备全生命周期数字孪生体。当多维传感器数据与预设阈值产生0.5σ偏移时,系统自动触发贝叶斯网络进行故障溯源,提前14-30天生成预测性维护方案。实际应用数据显示,该技术使联合收割机非计划停机时长减少62%,维护成本降低41%。

#精准农艺决策引擎

通过融合多光谱遥感数据与土壤成分建模,构建作物生长条件的三维决策矩阵。基于联邦学习框架,系统可动态生成包含播种深度、施肥梯度、灌溉频率等18个参数的农艺方案。在东北黑土地试验中,该技术使玉米单位产量提升22.3%,同时减少氮肥使用量19.8%,实现经济效益与生态效益的双重优化。

在这里插入图片描述

2.自动化农田作业

#智能决策型耕作规划系统

基于多维农业数据训练的AI中枢,可整合土壤离子图谱、微气候模型及地形特征生成种植参数矩阵。通过深度强化学习算法解析百年农耕档案库,系统能自主构建作物-环境适配模型,动态输出最优垄作高度、播种密度和覆土压强方案。实际应用显示可使出苗整齐度提升37%,水肥利用效率提高29%。

#动态执行式播种管理系统

搭载高精度环境感知阵列的智能种植装备,运用联邦学习技术融合区域农情数据库,可实时生成变量播种处方图。系统通过分析作物表型组学数据与气象预测云图,动态调整播种时序与定位精度,在冀北平原测试中实现人力投入减少64%,出苗率稳定在98.5%以上。

#自适应土壤改良系统

基于毫米波雷达与光谱传感的土壤诊断平台,运用生成对抗网络构建三维地力模型。系统通过多物理场耦合仿真,可自动生成旋耕扭矩曲线与松土频率矩阵,在黄淮海盐碱地改良工程中使土壤孔隙度优化42%,根系发育周期缩短21天。

#智慧水网调控中枢

融合LoRa物联网络的神经网络模型,通过贝叶斯优化算法处理墒情热力图与蒸散发数据。该中枢可制定动态灌溉决策树,在胶东半岛应用中实现节水58%,同时构建地下水位预警机制,使内涝发生率下降76%。

在这里插入图片描述

#全维度采收决策系统

基于作物生长监测阵列的深度时序分析模型,结合高光谱遥感数据预测最佳采收窗口期。装备强化学习路径规划模块的智能采收机组,在新疆棉田应用中使采净率提升至99.2%,残膜回收率提高至95.8%,综合作业效能提升3.7倍。

3.无人机在农业中的应用

无人机作为一种基于遥感技术的飞行器,近年来在农业领域迅速发展并得到了广泛应用。它的高效、灵活和经济的特点,使其成为农业生产和管理的有力工具。无人机在农业中的具体应用包括作物监测、农药喷洒、快速播种和植保等。

#精准农情观测

高精度成像设备与多光谱传感技术的结合,使无人机成为农田的"空中监测员"。通过周期性航拍建立的作物生长数字模型,可实时获取植株高度、冠层密度、叶绿素含量等21项生物指标。特别是搭载的光谱分析模块,能捕捉肉眼不可见的叶片反射特征,对早期病害和营养失衡实现毫米级识别,帮助农户构建数字化种植决策系统。

#智能施药系统

采用毫米波雷达定位与变量喷雾技术,无人机施药系统较传统方式展现三大革新优势:

  • 精准流量控制(±5ml/亩误差)

  • 三维避障作业(自动规避电线杆等障碍物)

  • 环境友好模式(静电雾化减少40%药剂飘移)

在这里插入图片描述

#自动化播种方案

配备气吸式精量排种器的农用无人机,通过北斗差分定位实现:

  • 种子着床深度一致性达95%

  • 株距变异系数≤8%

  • 作业效率达80亩/小时

其模块化设计支持水稻、油菜等12类作物种子库快速切换,配合AI地形识别自动优化播撒参数。

#智慧植保体系

该体系整合三大核心技术:

  • NDVI植被指数监测:每48小时更新田间杂草热力图

  • 处方图联动系统:施肥量与土壤EC值智能匹配

  • 多机协同网络:支持50架次无人机集群作业

#应用效益矩阵

在这里插入图片描述
四、AI大模型与农业供应链优化

  1. AI大模型与农业供应链管理优化

农业供应链是指从农业生产资料的采购,农产品的生产、加工、运输,直到销售到最终消费者手中的整个过程。在这个过程中,供应链管理起到了至关重要的作用。通过对供应链的优化,可以降低成本、 提高效率、减少风险,从而提高整个供应链的竞争力。然而,传统的供应链管理方法往往存在一些问题,例如,信息不对称、沟通不畅、协同性不足等。这些问题导致了农产品在采购、生产、物流、销售等环节中存在很多问题,如滞销、缺货、质量不稳定等。因此,寻找一种更加高效、智能的供应链管理方法成为当务之急。

#采购决策优化

AI大模型基于企业过往5年采购数据库(涵盖品类矩阵、价格波动曲线、供应商KPI等12个维度),构建动态预测模型。通过特征工程处理,系统可提前120天预判大宗商品价格拐点,准确率达89.7%。供应商智能匹配引擎通过质量稳定性指数(QSI)和供应韧性系数(SRC)双重评估,使优质供应商识别效率提升3.2倍,采购成本节约率达15%-22%。

#生产效能升级

生产数字孪生系统整合设备IoT数据流(OEE设备效率、MTBF故障间隔)与环境变量(温湿度传感、土壤pH值等),构建多模态生产预测模型。通过强化学习算法,系统可提前预警63%的设备异常,使稼动率提升至92.4%。在农产品领域,基于卫星遥感数据与气候模型的生产规划系统,使亩产预测误差控制在±3%以内。

#智慧物流中枢

运输路径优化引擎融合实时交通拓扑数据、车辆载重特征及能耗模型,生成动态配送方案。冷链监控系统通过贝叶斯网络处理温度波动数据,使生鲜产品损耗率从8.3%降至2.1%。通过运力资源智能调度算法,单位物流成本下降19%,准时交付率提升至98.6%。

在这里插入图片描述

#精准营销引擎

消费者行为分析平台处理全网UGC数据(包括语义情感值、购买决策树等),构建360°用户画像。需求预测模型结合节假日效应因子和竞品价格弹性系数,实现SKU级销量预测准确率91.2%。通过动态定价算法和个性化推荐系统,客户转化率提升37%,库存周转速度加快2.8倍。

2.农产品溯源与质量监控

AI大模型具有强大的数据处理、模式识别和预测能力,能够帮助企业在农产品的生产、加工、运输和销售过程中实现全面的溯源与质量监控,从而提高农产品的质量安全水平,增强消费者对农产品的信心。

#全链路智能监测体系

基于海量训练数据的AI大模型构建了农产品全生命周期动态追踪与全流程可视化平台。通过深度学习与特征提取算法,系统可即时识别种植阶段生物胁迫信号、加工环节微生物污染指数等16类关键指标,当检测到叶绿素活性下降40%或加工间菌落总数超标时,系统将在120秒内触发三级预警机制,同步推送至质量管控中心与属地监管平台,形成"监测-预警-处置-反馈"的闭环管理体系。多维数据关联分析模块还可解析气象波动、土壤墒情、施肥配比等23个生产因子对农产品品质的影响权重,为企业建立精准化的种植模型提供数据支撑。

#区块链溯源决策系统

依托分布式计算架构的溯源引擎支持多维度交叉检索,消费者通过产品唯一标识码可获取包含68项质量参数的溯源档案,涵盖施药记录、冷链温控、质检报告等核心信息。企业级管理端具备供应链穿透式追溯功能,当检测到某批次产品黄曲霉毒素异常时,系统可在15分钟内完成全链条数据回溯,精准定位原料采购环节的质控漏洞,并自动生成包含召回范围预测、责任认定分析、整改方案建议的处置报告,使质量事故处理效率提升83%。

在这里插入图片描述

#多维度品质建模优化

AI品质评估矩阵整合近红外光谱分析、质构仪检测和感官评价数据,构建了包含137个特征参数的数字化品控模型。在采后处理环节,系统通过三维视觉扫描可自动完成果品糖度分级与瑕疵检测,分选精度达±0.2Brix;营养强化模块能根据目标人群需求优化成分配比,例如为母婴群体定制富硒米蛋白含量提升方案;基于消费大数据的口感预测模型,可模拟区域市场偏好生成产品改良建议,使新品研发周期缩短60%。

#智慧农事管理中枢

环境物联网感知矩阵实时采集72小时内的温室环境数据流,AI调控系统通过LSTM神经网络预测未来8小时环境演变趋势,当预测到夜间积温不足时,可提前2小时启动地源热泵系统进行温度补偿。生产排程优化引擎综合市场行情、产能配置、物流时效等18个变量,可生成动态生产计划方案,使设施农业单位面积产值提升35%。设备互联平台已实现灌溉、施肥、环控等9大系统的智能联动,异常工况自修复率达92%。

学习资源

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

大模型从零基础到进阶的学习路线大纲全览

在这里插入图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

智泊AI:中国领先的人工智能(AI)平台和服务团队,致力于推动数字转型与智能升级,通过AI技术赋能未来人才发展。

PS:以上学习资源,咨询课程、1对1就业指导、技术进阶提升。公号同名

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值