温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
Python + Vue.js 知识图谱中华古诗词可视化技术说明
一、引言
中华古诗词作为中华民族传统文化的璀璨明珠,承载着丰富的历史、文化与情感内涵。在数字化时代,借助现代技术对古诗词进行可视化呈现,有助于更直观地展现其内在结构与关系,促进古诗词的传承、研究与教学。本技术说明将详细阐述如何利用 Python 和 Vue.js 实现中华古诗词知识图谱的可视化。
二、技术选型与优势
(一)Python
Python 是一种功能强大且易于学习的高级编程语言,在数据处理、自然语言处理、机器学习和可视化等领域具有广泛应用。其丰富的第三方库,如 requests、BeautifulSoup、jieba、scikit-learn、TensorFlow/PyTorch 等,为古诗词数据的采集、预处理、知识图谱构建和情感分析提供了有力支持。
(二)Vue.js
Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,具有响应式数据绑定和组件化特性。它能够快速构建交互性强、用户体验良好的前端界面,非常适合用于知识图谱的可视化展示。结合 D3.js、ECharts 等可视化库,可以实现复杂而美观的可视化效果。
(三)技术组合优势
Python 负责后端的数据处理和知识图谱构建,Vue.js 负责前端的知识图谱展示与交互,前后端分离的架构使得系统开发更加灵活、高效。Python 的强大计算能力和丰富的库资源能够确保数据处理的准确性和高效性,而 Vue.js 的响应式特性和丰富的可视化库能够提供流畅、直观的用户体验。
三、系统架构设计
(一)整体架构
系统采用前后端分离的架构,分为数据采集与预处理层、知识图谱构建层、情感分析层、可视化展示层和用户交互层。各层之间通过 API 进行数据交互,实现系统的模块化和可扩展性。
(二)各层功能与实现
- 数据采集与预处理层
- 功能:从公开数据库(如《唐诗三百首》、古诗文网等)和互联网诗词平台爬取古诗词数据,包括诗词原文、作者信息、创作背景等。对收集到的数据进行清洗,去除噪声数据,如 HTML 标签、特殊字符等,并统一数据格式。
- 实现:使用 Python 的 requests 库发送 HTTP 请求获取网页内容,BeautifulSoup 库解析 HTML 文档,提取所需的数据。利用正则表达式和字符串处理方法进行数据清洗和格式统一。使用 jieba 库对诗词文本进行分词和去停用词处理,为后续的知识图谱构建和情感分析做准备。
- 知识图谱构建层
- 功能:识别古诗词中的实体(如诗人、诗作、朝代、意象等)和关系(如“诗人 - 作品”“作品 - 主题”等),构建中华古诗词知识图谱。
- 实现:采用基于规则与机器学习相结合的方法进行实体识别。通过定义一系列规则,如“人名 + 创作 + 诗词名”等模式,识别诗人、诗作等实体;同时,利用 scikit-learn 库中的机器学习算法,如决策树、支持向量机等,对标注好的训练数据进行学习,构建实体识别模型。关系抽取通过依存句法分析挖掘实体之间的关系,结合规则匹配和基于机器学习的关系抽取方法。选择 Neo4j 图数据库进行存储,将识别出的实体作为节点,抽取的关系作为边,定义节点和边的属性,构建完整的中华古诗词知识图谱。
- 情感分析层
- 功能:对古诗词进行情感分析,判断其情感倾向(如积极、消极、中性等)。
- 实现:将古诗词文本转换为计算机可以处理的向量形式,采用 Word2Vec 词向量方法,将每个词表示为一个固定维度的向量。选择 LSTM 深度学习模型对古诗词进行情感分类,使用大量的标注数据对 LSTM 模型进行训练,通过反向传播算法调整模型参数。为了提高模型的性能,采用数据增强技术扩充数据集,对 LSTM 模型进行参数调优。同时,结合 BERT 预训练模型进行迁移学习,在古诗词情感分析任务上对 BERT 模型进行微调,将预训练模型学习到的知识迁移到当前任务中,显著提高情感分析的准确性。
- 可视化展示层
- 功能:使用 Vue.js 结合可视化库(如 D3.js、ECharts)将知识图谱以直观、交互式的方式展示出来。
- 实现:使用 Vue.js 构建前端界面,通过定义组件实现页面的模块化开发。利用 D3.js 的力导向布局、圆形布局等算法,将知识图谱中的节点和边以图形化的方式展示出来。通过定义节点和边的样式、颜色、大小等属性,增强可视化效果。使用 ECharts 展示古诗词相关的统计图表,如不同朝代诗人的数量分布、某位诗人不同情感类型诗词的数量对比等,与知识图谱进行联动展示。
- 用户交互层
- 功能:提供用户与系统进行交互的界面,用户可以通过输入关键词进行查询,系统根据用户的查询请求在知识图谱中进行检索,并将结果以可视化的方式展示给用户。用户还可以对展示的知识图谱进行交互操作,如缩放、拖动、点击查看详细信息等。
- 实现:在 Vue.js 界面中添加搜索框和按钮,通过绑定事件处理函数,将用户的查询请求发送到后端 API。后端使用 Flask 或 Django 等框架搭建 API 服务,接收查询请求并在知识图谱中进行检索,将结果返回给前端。前端根据返回的结果更新可视化展示,实现交互式查询。同时,为可视化图表添加交互事件,如鼠标悬停显示节点详细信息、点击节点展开子节点等,提高用户体验。
四、关键技术实现细节
(一)数据采集与预处理
- 数据源选择:选择权威的古诗词数据库和诗词平台,确保数据的准确性和完整性。
- 数据清洗:处理缺失值、重复值和异常值,去除噪声数据,如 HTML 标签、特殊字符等。
- 分词与去停用词:使用 jieba 库进行分词,结合自定义词典和停用词表,提高分词的准确性。
(二)知识图谱构建
- 实体识别规则定义:根据古诗词的特点,定义一系列实体识别规则,如人名、地名、朝代名等。
- 机器学习模型训练:选择合适的机器学习算法,使用标注好的训练数据进行模型训练,评估模型的性能并进行优化。
- 关系抽取方法:结合依存句法分析和规则匹配、机器学习的方法,提高关系抽取的准确性和召回率。
- Neo4j 数据库操作:使用 Py2neo 库连接 Neo4j 数据库,进行节点和边的创建、查询和更新操作。
(三)情感分析
- 文本表示方法选择:比较不同的文本表示方法,如词袋模型、TF-IDF、Word2Vec 等,选择最适合古诗词情感分析的方法。
- 深度学习模型构建:使用 TensorFlow 或 PyTorch 框架构建 LSTM 模型,设置合适的网络结构和超参数。
- 数据增强技术:采用同义词替换、随机插入、随机删除等方法扩充数据集,提高模型的泛化能力。
- BERT 迁移学习:下载预训练的 BERT 模型,在古诗词情感分析任务上进行微调,调整学习率、批次大小等超参数,提高模型的性能。
(四)可视化展示
- D3.js 布局算法应用:根据知识图谱的特点,选择合适的布局算法,如力导向布局可以使节点和边分布更加均匀,圆形布局可以突出中心节点。
- 样式定义与交互设计:通过 CSS 和 JavaScript 定义节点和边的样式,如颜色、大小、形状等。为可视化图表添加交互事件,实现用户的交互操作。
- ECharts 图表集成:将 ECharts 图表嵌入到 Vue.js 组件中,通过配置项设置图表的类型、数据、样式等,实现与知识图谱的联动展示。
五、系统测试与优化
(一)功能测试
对系统的各个功能模块进行测试,包括数据采集与预处理、知识图谱构建、情感分析、可视化展示和用户交互等。确保每个功能模块都能正常运行,满足设计要求。
(二)性能测试
测试系统在不同数据量和并发用户数下的性能表现,如响应时间、吞吐量等。对系统的性能瓶颈进行分析和优化,如优化数据库查询语句、调整深度学习模型的参数等。
(三)用户体验测试
邀请用户对系统的可视化展示和交互操作进行测试,收集用户的反馈意见。根据用户的反馈,对系统的界面设计、交互流程等进行优化,提高用户体验。
六、总结与展望
(一)总结
本技术说明详细阐述了利用 Python 和 Vue.js 实现中华古诗词知识图谱可视化的过程,包括技术选型、系统架构设计、关键技术实现细节、系统测试与优化等方面。通过前后端分离的架构,结合 Python 的数据处理和机器学习能力和 Vue.js 的前端可视化能力,实现了中华古诗词知识图谱的高效构建和直观展示。
(二)展望
未来可以进一步优化知识图谱的构建算法,提高实体识别和关系抽取的准确性。探索更多深度学习模型在古诗词情感分析中的应用,提高情感分析的性能。加强系统的交互性和个性化推荐功能,根据用户的兴趣和偏好,为用户提供更加精准的古诗词推荐。同时,将系统与其他文化传承项目进行集成,扩大中华古诗词的影响力。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻