Stable Video Diffusion重磅发布,快来看看哪些功能

本周,有关 OpenAI 宫斗的报道占据了Ai圈版面的主导地位,吃够了奥特曼的大瓜。我们来看看Stability AI刚发布的Stable Video Diffusion,这是一种通过对现有图像进行动画处理来生成视频的 AI 模型。基于 Stability 现有的Stable Diffusion文本到图像模型,Stable Video Diffusion 是开源或商业中为数不多的视频生成模型之一。

项目地址:https://github.com/Stability-AI/generative-models

c05c66bd86ef0fe4da9544f39e36ae64.jpeg

Stable Video Diffusion是第一个以Stable Diffusion模型作为基础的影片生成模型,官方在其研究论文提到,近来研究人员在原本用于2D图像生成的潜在扩散模型(Latent Diffusion Model,LDM),加入时间层,并且使用小型、高品质的影片资料集加以训练,试图将其改造成影片生成模型。

Stability AI最新研究进一步定义出训练影片LDM的三个阶段,分别是文字到图像的预训练、影片预训练,最后则是高品质影片的微调。研究人员强调,经过良好整理的预训练资料集,对于产生高品质影片非常重要,甚至还提出一套包括标题制作和过滤策略的系统性整理流程。

研究人员也展示了在高品质资料上微调基础模型的影响,并训练出能够和闭源影片生成模型相匹敌的文字转影片模型。Stable Video Diffusion还可用于图像转影片的生成任务,并且展现出强大的动作表示能力,且适用特

### 稳定视频扩散技术概述 稳定视频扩散(Stable Video Diffusion)是一种基于生成对抗网络(GANs)、变分自编码器(VAEs),以及最近流行的扩散模型来处理视频数据的方法。这些模型通过逐步向输入添加噪声并学习如何逆转这一过程,从而能够生成高质量的图像和视频帧。 #### 扩散模型基础原理 扩散模型的核心在于定义一个前向扩散过程,在该过程中逐渐增加随机噪声直到原始信号被完全破坏;接着训练神经网络执行反向过程——即从纯噪音恢复到清晰的数据样本。对于视频而言,这意味着不仅要考虑单个帧内的空间一致性,还要保持时间维度上的连贯性[^2]。 ```python import torch from torchvision import transforms from stable_diffusion import StableDiffusionModel # 假设这是一个预训练好的库 def apply_stable_video_diffusion(video_tensor): transform = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor() ]) model = StableDiffusionModel(pretrained=True).cuda() processed_frames = [] for frame in video_tensor: input_frame = transform(frame).unsqueeze(0).cuda() # 处理每一帧 with torch.no_grad(): output_frame = model(input_frame)[0].cpu().numpy() processed_frames.append(output_frame) return torch.stack(processed_frames) ``` 此代码片段展示了如何利用预训练的`StableDiffusionModel`类对给定的一系列视频帧应用稳定的视频扩散效果。需要注意的是实际部署时还需要针对具体应用场景调整参数设置与优化策略。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值