C语言进阶(1)-深度剖析数据在内存中的存储

前言:数据在计算机中的存储

CPU -  Central Processing Unit

数据在计算机中的存储位置不同,但大致可以分为以下几个空间。

今天讲解的是数据在内存中的存储,而数据在内存中的存储可以分为三个部分,如下:

今天的重点讲解在栈区中的存放。

1024512

256

1286432168421
2^102^92^82^72^62^52^42^32^22^12^0

1.数据类型的介绍

我们已经学过C语言的基本内置数据类型,这些数据类型给都是C语言规定好的,具有不可改动性。

char            //字符数据类型        1byte
short          //短整型                   2byte
int              //整形                       4byte
long            //长整型                   4byte
long long   //更长的整形            8byte
float            //单精度浮点数        4byte
double        //双精度浮点数        8byte
long double
//C 语言有没有字符串类型?

以及他们所占存储空间的大小。

注意:C语言规定:sizeof(long) >= sizeof(int);

类型的意义:

1.  使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。

//C99中引入了布尔类型

//专门用来判断真假的

#include<stdio.h>
#include<stdbool.h>
int main()
{
	_Bool flag = true;//false
	if (flag)
	{
		printf("hehe\n");
	}
	return 0;
}

1.1 类型的基本归类:

整型家族:

char        (字符在内存中的存储是以其ASCll码值存放的,所以归类为整形)
                unsigned char      //无符号整形(中没有负数) - 8bit  (0~255)
                signed char          //有符号整形  - 8bit  (-128~127)
short
                unsigned short [ int ]
                signed short [ int ]   //16bit  (-32768 ~ 32767)
int
                unsigned int
                signed int              //32bit  (-2147483647-1 ~ 2147483647)
long
                unsigned long [ int ]
                signed long [ int ]

int     ->    signed int   (等价于)

short ->    signed short

long  ->    signed long

char 到底是signed char 还是unsigned char 是取决于编译器的实现的。

常见的编译器下,char就是signed char.

浮点数家族:

float
double         //对精度要求高

构造类型:(构造类型也叫自定义类型)(需要人为的创建,初始化)

> 数组类型
> 结构体类型   struct
> 枚举类型   enum
> 联合类型   union

指针类型

char*  pc ;  short* ci;
int * pi ;      long* d;
float* pf ;   double* di;
void* pv ;

空类型:

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
(可以理解为void 类型的存在使我们的代码更加规范)
比如:在函数传参时我们不需要传递参数,添加一个void就代表了不需要传参。
补充:在整形数据中我们不仅要了解其分类,还需要了解每个数据类型对应的数据范围(<limits.t>头文件可以查看),以下深入了解char类型的无有符号数对应的范围:
signed char  有符号,代表有正负,其补码首位是符号位,其它位是数值位。
1byte - 8bit  范围:-128 ~ 127
00000000   =   0
00000001   =   1 
00000010   =   2  
00000011   =   3
................
0111 1111   =   2^7-1  = 127
10000000   =  128
10000001   =  -127
...............
1111 1110   =  -2
1111 1111   = -1
................
.
1000 0001 -> 原码 1111 1111 -> -127
1000 0000 -> 此值不能按照补码-反码-原码的方式来计算,直接解析为-128.
1000 0000 规定为-128;
unsigned char   无符号,所有位都是数值位
1byte - 8bit   范围: 0~255
00000000   =   0
00000001   =   1
00000010   =   2
00000011   =   3
................
0111 1111   =   127
10000000   =   128
10000001   =   129
...............
11111110    =    254
11111111    =    255
.
补充:对于char类型的变量来说,C语言中没有明确的规定单独一个char是有符号的还是无符号类型的,不同的编译器有不同的情况,在VS默认是signed char.
如图表示:

2.整形在内存中的存储

我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来谈谈数据再所开辟内存中到底是如何存储的?
比如:
int a = 20;
int b = -10;
我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:
2.1 整形数据在内存中的存储: 原码、反码、补码
计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有 符号位 数值位 两部分,符号位都是用 0 表示 ,用 1 表示 ,而数值位
负整数的三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码。
正数的原、反、补码都相同。
对于整形来说:数据存放内存中其实存放的是补码。

举例说明:一个负数的原反补码,在内存中把补码打印出来。

原码:一个数对应的二进制序列  如:-15

>10000000 00000000 00000000 00000111

反码:原码除符号位外其他位按位取反,如:-15的反码:

>11111111 11111111 11111111 11111000

补码:反码+1=补码  如:-15的补码:

>11111111 11111111 11111111 11111001

举例:

//获取一个整数的二进制序列
#include<stdio.h>
int main()
{
	int a = -15;
	unsigned int com = 1 << 31;
	int i = 0;
	for (i = 0; i < 32; i++)
	{
		if (a & com)
			printf("1");
		else
			printf("0");
		com = com >> 1;
	}
	return 0;
}

结果如图所示: 

为什么要这样存储呢?
        在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
        同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路.
我们看看在内存中的存储:

 我们看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲

这是什么原因呢?

2.2 大小端介绍

什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
如图所示:
为什么有大端和小端:
         为什么会有大小端模式之分呢?
        这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。
但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。
对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。
小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。( 10 分)
//代码1
#include<stdio.h>
int main()
{
	int a = 1;
	char* p = (char*)&a; //int*
	if (1 == *p)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

//代码2(使用函数)

#include <stdio.h>
int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

原理都是一样的,只是写法不同,便于理解。

2.3 练习
1.
//以下程序输出什么?
#include <stdio.h>
int main ()
{
      char a = - 1 ;
      signed char b =- 1 ;
      unsigned char c =- 1 ;
      printf ( "a=%d,b=%d,c=%d" , a , b , c );
      return 0 ;
}
输出:a=-1,b=-1,c=255

解析:

-1

10000000 00000000 00000000 00000001  -  原码

11111111   11111111   11111111   11111110   -  反码

11111111   11111111   11111111   11111111   -   补码

a -> 11111111  (%d : 整形提升)

11111111 11111111 11111111 11111111  -  补码

11111111 11111111 11111111 11111110  -  反码

10000000 00000000 00000000 00000001 - 原码

b -> 11111111  (%d : 整形提升)

a 和 b 是一样的,结果为-1.

c -> 11111111  (%d : 整型提升)

00000000 00000000 00000000 11111111

c = 255

总结:关于什么时候使用截断思想

如果所给的数值在它的数据类型的数据范围之内,可直接写出对应的二进制序列;

如果所给的数值不在我的数据类型的数据范围之内,比如c中,-1并不在unsigned char的数据范围之内,这是可以先将他的补码求出,再利用截断思想。

同时,要了解整形提升以及整形提升的规则。

下面程序输出什么?

2.
#include <stdio.h>
int main ()
{
         char a = - 128 ;
//先想-128是否属于char类型的数据范围之内(-128~127),属于
//直接写出二进制序列:1000 0000
//整型提升:11111111 11111111 11111111 10000000
//%u:是以无符号整形输出,数据范围是恒>=0,所以其原码=反码=补码。
         printf ( "%u\n" , a );
         return 0 ;
}
//输出: 4294967168
3.
#include <stdio.h>
int main ()
{
        char a = 128 ;
//128不属于char类型的数据范围之内(-128~127)
//先写补码,再利用截断
//00000000 00000000 00000000 10000000
//截断:1000 0000 (和练习2中的a存储的数据相同,故答案相同)
         printf ( "%u\n" , a );
         return 0 ;
}
//输出: 4294967168
4.
#include<stdio.h>
int main()
{
        int = - 20 ;
//10000000 00000000 00000000 00010100
//11111111   11111111   11111111   11101011
//11111111   11111111   11111111   11101100 -> -20的补码
        unsigned   int   j = 10 ;
//00000000 00000000 00000000 00001010-> 10的补码
//相加:
//11111111 11111111 11111111 11110110 - 补码
//11111111 11111111 11111111 11110101 - 反码
//10000000 00000000 00000000 00001010 - 原码
        printf ( "%d\n" , i + j );
}
// 按照补码的形式进行运算,最后格式化成为有符号整数
//输出结果为:-10
5.
#include<stdio.h>
#include<windows.h>
int main()
{
       unsigned int i;
       for (i = 9; i >= 0; i--)
       {
           printf("%u\n", i);
           Sleep(1000);
       }
       return 0;
}
//i=0 之后进行i--的操作,i= -1
//但是i是unsigned int 类型的,并不包括负数,所以要先写补码,在截断
//10000000 00000000 00000000 00000001
//11111111   11111111   11111111   11111110
//11111111   11111111   11111111   11111111 -> i 中存储的数据(注意首位并不是符号位,而是数值位)
//最后会出现死循环
i 是无符号数,不可能为负数,所以一直在循环。
//9 8 7 6 5 4 3 2 1 0  4294967295 4294967294
6.
int main ()
{
         char a [ 1000 ];
         int i ;
         for ( i = 0 ; i < 1000 ; i ++ )
       {
             a [ i ] = - 1 - i ;
       }
        printf ( "%d" , strlen ( a ));
        return 0 ;
}
//输出255
//char 的数据范围:-128~127
//-128 : 10000000 00000000 00000000 10000000
//-129 : 10000000 00000000 00000000 10000001
但char类型只占一个字节,所以发生截断
//-129 :11111111 11111111 11111111 01111110 - 反
              11111111 11111111 11111111 01111111 - 补
截断:01111111 -> a[i] 中存储的数据是127
所以,在经过-128之后,a[i] 中的数据符合上面所讲的char 类型数据的范围,
-1, -2, -3, ....... ,-128, 127, 126, ......., 1, 0
而strlen求解的是字符串中\0之前的字符个数,\0的ASCLL码值为0.
所以有效长度为128+127=255;
7.
#include <stdio.h>
unsigned char i = 0 ;
int main ()
{
        for ( i = 0 ; i <= 255 ; i ++ )
      {
            printf ( "hello world\n" );
      }
       return 0 ;
}
//死循环
//unsigned char数据类型的数据范围:0~255
//i 的任何值都不会大于255,所以此代码会循环打印hello world。
3. 浮点型在内存中的存储
常见的浮点数:
3.14159
1E10        --->    (1.0*10^10)
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义
limits.h  ---   整型家族
float.h   ---   浮点数家族
3.1 一个例子
浮点数存储的例子:
#include<stdio.h>
#include<float.h>
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

输出结果为:

此例证明了整数和浮点型存储方式不一样。

(%f, %lf, 默认小数点后都有6位)

3.2 浮点数存储规则
num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:根据国际标准IEEE (电气和电子工程协会) 754 ,任意一个二进制浮点数 V 可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的 5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2
那么,按照上面 V 的格式,可以得出 s=0 M=1.01 E=2
十进制的 -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么, s=1 M=1.01 E=2
IEEE 754 规定:
对于 32 位的浮点数,最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23 位为有效数字 M

对于 64 位的浮点数, 最高的1位是符号位S ,接着的 11位是指数E ,剩下的 52位为有效数字M

IEEE 754 对有效数字 M 和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的 xxxxxx 部分。比如保存 1.01 的时 候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。
这样做的目的,是节省 1 位有效数字。以 32 位 浮点数为例,留给M 只有 23 位,
将第一位的 1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。
首先, E 为一个无符号整数( unsigned int
这意味着,如果 E 8 位,它的取值范围为 0~255 ;如果E为 11 位,它的取值范围为 0~2047 。但是,我们知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数是127
对于 11 位的 E ,这个中间数是1023
比如, 2^10 E 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即
10001001
然后,指数 E 从内存中取出还可以再分成三种情况:
E 不全为 0 或不全为 1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,
而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,
则其二进制表示形式为:
0 01111110 00000000000000000000000
E 全为 0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E 全为 1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,关于浮点数的表示规则,就说到这里。
解释前面的题目:
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000
首先,将 0x00000009 拆分,得到 第一位符号位s=0 ,后面 8位的指数 E=00000000
最后 23位的有效数字M=000 0000 0000 0000 0000 1001
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
S=0, E=0, M=0.xxx1001
V = (-1)^0 * 0.00xx 1001 * 2^(-126) = 0.00 
由于指数 E 全为 0 ,所以符合上一节的第二种情况。因此,浮点数 V 就写成:
V=( - 1)^0 × 0.00000000000000000001001×2^( - 126)=1.001×2^( - 146)
显然, V 是一个很小的接近于 0 的正数,所以用十进制小数表示就是 0.000000 .

再看例题的第二部分.
请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0, 即1.001*2^3.
9.0 -> 1001.0 -> ( - 1 ) ^01 . 0012 ^3 -> s = 0 , M = 1.001 , E = 3 + 127 = 130
那么,第一位的符号位 s=0 ,有效数字 M 等于 001 后面再加 20 0 ,凑满 23 位,指数 E 等于 3+127=130 , 即10000010
0 10000010 001 0000 0000 0000 0000 0000
所以,写成二进制形式,应该是 s+E+M ,即
这个 32 位的二进制数,还原成十进制,正是 1091567616

本章完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dream wings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值