Datawhale AI 夏令营(第五期) 李宏毅苹果书 Task 3 《深度学习详解(进阶)》

Task 3.1 《深度学习详解》- 3.7 批量归一化

神经网络训练不起来怎么办(5):批次标准化(Batch Normalization)简介_哔哩哔哩_bilibili

批量归一化(Batch Normalization,BN)是深度学习中常用的技术,旨在通过规范输入数据,改善网络训练效率和效果。本文将对 3.7 部分内容进行总结和分析,并探讨其优缺点以及潜在问题。

批量归一化的作用

批量归一化通过以下方式影响深度学习模型:

  • 加速训练: BN 可以减少内部协变量偏移,使网络训练更加稳定,从而加速收敛。实验表明,使用 BN 的模型在相同时间内可以达到更高的准确率。
  • 提高模型泛化能力: BN 可以使模型对输入数据的微小变化更加鲁棒,从而提高泛化能力。
  • 降低对初始化敏感度: BN 可以使网络对权重初始化的依赖性降低,更容易收敛到较好的解。
  • 允许使用更高的学习率: 由于 BN 改善了误差表面的平滑性,可以使用更高的学习率进行训练,进一步加速收敛。

批量归一化的原理

BN 的核心思想是将每个批次的数据进行标准化处理,使其具有零均值和单位方差。具体步骤如下:

  1. 计算均值和方差: 对于每个批次的数据,计算其均值和方差。
  2. 标准化: 将数据减去均值并除以标准差,使其具有零均值和单位方差。
  3. 缩放和平移: 通过可学习的参数 γ 和 β 对标准化后的数据进行缩放和平移,恢复数据的原始分布。

批量归一化的实现细节

  • 批量大小: BN 适用于批量大小较大的情况,因为需要足够的样本才能准确估计均值和方差。
  • 滑动平均: 在测试时,由于没有批次的概念,使用训练过程中计算出的均值和方差的滑动平均作为测试数据的均值和方差。
  • 归一化层: BN 通常以网络层的形式实现,可以插入到网络中任何位置。

批量归一化存在的问题和疑问

  • 内部协变量偏移: BN 原始论文提出内部协变量偏移的概念,认为其是导致训练困难的主要原因。然而,后续研究表明,内部协变量偏移可能并非主要原因,BN 的效果可能来自于其对误差表面平滑性的影响。
  • 批量大小的影响: BN 依赖于批量大小,当批量较小时,BN 的效果会下降。
  • 可解释性: BN 的内部机制复杂,难以解释其对模型的影响。
  • 训练时间: BN 需要计算均值和方差,增加了训练时间。
  • 异常值: BN 对异常值敏感,可能导致训练不稳定。

批量归一化的改进方案

  • 批量重归一化: 批量重归一化通过在测试时使用原始的均值和方差,并动态调整 γ 和 β,来提高模型的泛化能力。
  • 层归一化: 层归一化不依赖于批量大小,适用于小批量训练。
  • 实例归一化: 实例归一化对每个样本进行归一化,适用于图像风格迁移等任务。
  • 组归一化: 组归一化将数据分为多个组,并对每个组进行归一化,适用于图像分类等任务。

Task 3.2 《深度学习详解》- 4.1&2&3&4 卷积神经网络-上

卷积神经网络 (Convolutional Neural Networks, CNN)_哔哩哔哩_bilibili

卷积神经网络(CNN)的基本原理和设计思路,并以图像分类任务为例,解释了CNN相较于全连接网络的简化之处。以下是对文档内容的总结和分析,并针对其中一些问题提出疑问:

1. CNN 的简化

  • 感受野:CNN 通过设定感受野,将图像划分为多个区域,每个神经元只关注其对应的感受野内的信息。这大大减少了神经元的输入维度,从而降低了参数数量和过拟合风险。
  • 共享参数:CNN 采用参数共享机制,即多个神经元共享相同的权重,这进一步减少了参数数量,并使得网络能够更好地识别图像中重复出现的模式。

2. 感受野的设计

  • 大小:感受野的大小可以根据模式的特点进行调整,例如 3x3、5x5 或 7x7 等。一般而言,较小的感受野可以捕捉局部特征,而较大的感受野可以捕捉更全局的特征。
  • 步幅:步幅决定了感受野移动的距离,较大的步幅会导致感受野之间的重叠减少,从而丢失一些信息。较小的步幅则会增加感受野之间的重叠,但会增加计算量。
  • 填充:为了防止感受野超出图像边界,可以在边界处进行填充,例如零填充或反射填充。

3. 参数共享的意义

  • 减少参数数量:参数共享可以显著减少神经网络的参数数量,从而降低过拟合风险,并加快训练速度。
  • 捕捉重复模式:共享参数使得网络能够更好地识别图像中重复出现的模式,例如边缘、纹理等。
  • 平移不变性:共享参数使得网络对图像的平移具有不变性,即无论图像中的模式出现在哪个位置,网络都能将其识别出来。

4. CNN 的优势

  • 参数效率高:相较于全连接网络,CNN 具有更高的参数效率,可以更好地处理高维数据,例如图像和视频。
  • 特征提取能力强:CNN 可以自动学习图像的特征,例如边缘、纹理和形状等,从而提高图像识别的准确率。
  • 平移不变性:CNN 对图像的平移具有不变性,即无论图像中的模式出现在哪个位置,网络都能将其识别出来。

5. 存在的问题和疑问

  • 感受野的选择:如何选择合适的感受野大小和步幅是一个开放性问题,需要根据具体任务和数据集进行调整。
  • 填充方法的选择:不同的填充方法对网络性能的影响尚不明确,需要进一步研究。
  • 参数共享的局限性:参数共享虽然可以提高网络的泛化能力,但也可能导致网络无法捕捉到某些复杂的模式。
  • CNN 的可解释性:相较于全连接网络,CNN 的可解释性较差,难以理解网络是如何识别图像中的模式的。

6. 未来研究方向

  • 感受野的设计:探索更有效的感受野设计方法,例如可变形卷积、多尺度感受野等。
  • 参数共享的改进:研究更灵活的参数共享机制,例如分组卷积、深度可分离卷积等。
  • CNN 的可解释性:研究更有效的 CNN 可解释性方法,例如可视化技术、注意力机制等。

Task 3.3 《深度学习详解》- 3.5&6&7&8 卷积神经网络-下

卷积神经网络 (Convolutional Neural Networks, CNN)_哔哩哔哩_bilibili

4.5 简化 1 和 2 的总结

  • 全连接网络 vs. 卷积网络: 文档首先对比了全连接网络和卷积网络的区别。全连接网络具有最大的灵活性,可以学习各种特征,但参数数量庞大,容易过拟合。卷积网络通过引入“感受野”和“参数共享”的概念,减少了参数数量,降低了过拟合风险,更适合处理图像数据。
  • 卷积层的工作原理: 卷积层包含多个滤波器,每个滤波器负责检测图像中的特定模式。滤波器通过在图像上滑动并计算局部区域的内积来提取特征,生成特征映射。
  • 卷积网络的层级结构: 卷积网络通常包含多个卷积层,每个卷积层的滤波器数量可以不同。随着层数的增加,网络可以检测更大范围的模式。

4.6 观察 3:下采样不影响模式检测

  • 下采样: 将图像缩小,例如去除偶数行和列,图像尺寸会变为原来的 1/4。
  • 模式检测: 图像中的特定模式(例如物体形状)在下采样后仍然可以被识别。

4.7 简化 3:汇聚

  • 汇聚层: 用于减少特征映射的尺寸,降低运算量。常见的汇聚方法包括最大汇聚和平均汇聚。
  • 汇聚层的应用: 汇聚层通常用于卷积层之间,例如卷积-汇聚-卷积-汇聚的架构。
  • 全卷积网络: 近年来,一些网络架构开始省略汇聚层,采用全卷积网络,利用更深的卷积层来提取特征。

4.8 卷积神经网络的应用:下围棋

  • AlphaGo: AlphaGo 使用卷积神经网络来学习围棋,并通过特征提取和分类来预测最佳落子位置。
  • 卷积神经网络在围棋中的应用优势: 棋盘可以看作是一个图像,围棋中存在局部模式和全局模式,与图像的特性相似。
  • AlphaGo 的网络架构: AlphaGo 的网络包含多个卷积层,但没有使用汇聚层,更适合围棋这种精细的任务。

卷积神经网络在其他领域的应用

  • 语音识别: 卷积神经网络可以用于语音识别,通过提取语音信号的特征来识别语音内容。
  • 文本处理: 卷积神经网络可以用于文本分类,通过提取文本中的关键词和短语来识别文本的情感或主题。

卷积神经网络的局限性

  • 缩放和旋转不变性: 卷积神经网络无法处理图像的缩放和旋转,需要通过数据增强来提高模型的泛化能力。
  • 特定领域适应性: 卷积神经网络的设计需要考虑特定领域的特性,例如语音和文本数据的特性与图像数据不同。

总结

卷积神经网络是一种强大的深度学习模型,在图像识别、围棋、语音识别等领域取得了显著的成果。通过感受野和参数共享的概念,卷积网络可以有效地提取图像特征,并减少过拟合风险。然而,卷积神经网络也存在局限性,需要根据具体任务进行优化和调整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值