NLP-隐马尔可夫模型及使用实例

本文介绍了隐马尔可夫模型(HMM),包括模型的结构信息,如状态变量与观测变量的关系,以及确定HMM所需的状态转移、输出观测和初始状态概率参数。此外,还详细阐述了HMM在实际应用中面临的评估匹配程度、推断隐藏状态和训练模型优化三个基本问题及其解决方案,如前向算法、后向算法、维特比算法和鲍姆-韦尔奇算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 说明:学习笔记,内容来自周志华的‘机器学习’书籍和加号的‘七月在线’视频。

隐马尔可夫模型

隐马尔可夫模型(Hidden Markov Model,简称HMM)是结构最简单的动态贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模,在语音识别、自然语言处理等领域有广泛应用。——周志华《机器学习》

1.隐马尔可夫模型的结构信息:

隐马尔可夫模型中的变量可以分为两组,第一组是状态变量{ y1,y2,...,yn y 1 , y 2 , . . . , y n },,其中 yiy y i ∈ y 表示第 i i 时刻的系统状态,通常假定状态变量是隐藏的、不可被观测的,因此状态变量也被称为隐变量。第二组是观测变量{ x 1 , x 2 , . . , x n },其中 xix x i ∈ x 表示第 i i 时刻的观测值,如下图所示:
这里写图片描述
模型的图结构看起来有点类似于我们熟知的RNN模型。图中的箭头表示变量之间的依赖关系。在任意时刻,观测变量的取值仅依赖于状态变量,与其他状态变量和观测变量的取值无关。同时, t 时刻的状态仅依赖于 t1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值