持续更新中,最新版本可以查看语雀
笔记参考:
函数、极限与连续
函数
概念
函数是一种映射关系,它将一个集合中的每个元素(称为自变量)唯一地对应到另一个集合中的一个元素(称为因变量)。
定义域和值域:
- 定义域:函数中所有允许的输入值(自变量 x)的集合,表示函数在哪些输入值上有定义。
- 值域:函数所有可能的输出值(因变量 y)的集合,表示函数能够取到的所有结果。
常见函数的自然定义域❗
R表示全体实数
特殊函数
- 分段函数:在定义域不同的区间用不同的解析式表示的函数
- 隐函数:
- 抽象函数:
题型3,求抽象函数的定义域,例如:
题型4,求抽象函数的表达式:
函数的基本特性
有界性
单调性
奇偶性
周期性
反函数和复合函数
反函数
反函数性质:反函数和原函数关于直线关于直线y=x对称
反函数性质:反函数和原函数单调性相同
反函数性质:反函数和原函数奇偶性相同
复合函数
复合函数的性质:
- 复合函数f[g(x)] 中,f的定义域 包含 g的值域
基本初等函数
常见的函数,一定要记住图像
幂函数
幂运算法则:
指数函数
对数函数
对数运算法则:
三角函数
拓展:
三角函数的关系:
三角函数值表:
反三角函数
极限
无穷小:极限值为0
无穷大:极限值为无穷
数列的极限
收敛数列的性质:
夹逼准则:
题型,使用夹逼准则求数列极限:
函数的极限
概念
函数的极限就是自变量 x趋近于某个值 a时,函数 f(x)趋近于某个值 L。
极限关注的是函数在某一点附近的行为,不能理解极限为函数值域的最大值
数列极限和函数极限的区别和联系:
极限的运算法则
例题:
求极限的一种方法,直接带入法
极限的四则运算性质:
复合函数的极限运算法则:
因式分解求极限❗
根式有理化❗
思路:上下同时乘某式,消掉0因子
例题:
同除最大项❗
思路:上下同时除最大项,消掉无穷
两个重要极限❗
第一重要极限:
使用第一重要极限求极限
第二重要极限:
变式:
使用第二重要极限求极限:
函数的夹逼准则:
无穷小和无穷大
- 无穷小是函数,是趋近于0的过程
- 无穷大是函数,是趋近于无穷的过程
无穷小的性质
-
无穷小的和、差、积仍是无穷小
-
无穷小与有界函数的积是无穷小
-
无穷小的常数倍仍是无穷小
-
无穷小的极限为零
无穷小的比较
’
常用等价无穷小替换:
无穷小的运算法则
等价无穷小替换:
在求极限时,可以将复杂的无穷小替换为等价的简单无穷小。
例如:
连续
连续的定义
定理:
函数的间断点❗
间断点的分类:
示例:
基本初等函数的连续性
闭区间上的连续函数性质:
- 一定有最大值和最小值
- 零点定理:如果连续函数的一边大于0一边小于0,则函数的图像必定经过0
- 介值定理:零点定理的推论
导数
导数和可导
导数是函数在某一点的瞬时变化率,几何意义是函数在某一点的切线斜率
导数通过极限来定义,表示当自变量的变化量趋近于零时,函数的变化量与自变量变化量的比值的极限。导数的数学表达式如下:
导数的推论(可以不记):
左导数和右导数:
当一个函数存在左导数和右导数且相等时,该函数可导
可导和连续的关系:可导函数必连续
连续 => 左导数=右导数 =>可导
导数性质
基本导数公式❗(第一块的最常考):
导数的四则运算❗:
复合函数求导法则:
分段函数求导法则:两边正常求,中间求左右导数判断是否可导
反函数求导法则:反函数的导数等于原函数导数的倒数
隐函数求导法则:对隐函数方程两边同时对 x 求导,解出或y’
注意,y是x的函数,y对x求导是复合函数求导
参数函数求导法则:
幂指函数求导法则(对数求导法)
注意,(ln y)'对x求导是复合函数求导
求高阶导数:
- 求比其低一阶的导数
- y’’ = (y’)‘,y’‘’ = (y’‘)’,…
例如:
微分
概念:函数在某点附近的微小变化的引起的改变量的近似值
导数和微分的关系:微分和导数密切相关,但微分更侧重于变化量的近似计算,而导数更侧重于变化率的描述
微分的运算法则:和导数的求导法则一致,只需将dx移到右边
微分在近似计算中的应用:
例如:
中值定理
罗尔中值定理
概念:
几何意义:某段连续且存在斜率的函数中,如果存在两点的函数值相等,那么两点中间至少有一点切线平行于x轴(斜率为0)
应用:
- 判断二元函数方程是否存在实根
拉格朗日中值定理
几何意义:某段连续且存在斜率的函数中,那么两点中间至少有一点的切线平行于ab(斜率相等)
洛必达法则
定理:
前提:
导数的应用
函数的单调性
定义:函数在某一区间的上升和下降的趋势
函数的导数和单调性的关系:
- 导数的几何含义为函数的斜率,因此:
- 导数为正数,单调递增
- 导数为负数,单调递减
函数凹凸性
定义:函数在某一区间是凹还是凸的
例如:
- 二阶导数的几何含义为函数的凹凸性,因此:
- 二阶导数为正数,凹
- 二阶导数为负数,凸
函数的极值和最值
- 极值是与它的两侧相比,大于两侧是极大值,小于两侧是极小值;最值则是函数在定义域或指定区间内的最大最小值
极值定理:
- 通过函数的导数的正负,可以判断函数单调性,从而取得极值
- 如果函数在某点附近可导,如果该点左侧单调递增,右侧单调递减,则函数在该点有极大值;如果该点左侧单调递减,右侧单调递增,则函数在该点有极小值
- 通过函数的一阶和二阶导数,可以判断函数的单调性和凹凸性,从而取得极值
- 如果函数在某点既不递增又不递减,且该点为凹或凸的中心点,则函数在该点有极值
具体如下:
函数曲线的渐近线
渐进线:
- 如果无定义点处的极限为无穷,则存在垂直渐近线
- 如果函数当 x 趋近于 ±∞ 时,极限为0,则存在水平渐近线
示例:
不定积分
概念
积分是导数的逆运算,分为定积分和不定积分两种。
其中,f(x)称为原函数
设原函数的导数为f(x),那么f(x)的全体原函数称为f(x)的不定积分,记作:
例如:
C表示任意常数,常数的导数为0
不定积分的求解
公式
常用:
其他:
性质
第一类换元法(凑微分)
思路:
例如:
- dx中,x可以任意加减常数,求出来的依然是全体原函数
第二类换元法
根式代换:设根式下面的东西为t,解出x=f(t),代入原式,最后再将t用t=g(x)替换
示例:
三角代换:
根据公式消元:
示例:
分部积分法❗
公式:
示例:
定积分
概念
如何求一个任意图形的面积?
任何图形都可以分隔为多个曲边梯形
- 在一个特定区间 [a,b] 上对函数 f(x) 进行积分的过程
- 用于计算特定区间上的累积量或总和
牛顿莱布尼兹公式
示例:
性质
求解
换元积分法
定积分的换元法和不定积分的换元法类似,但是当变量代换后,积分上下限也要相应变换
第一积分换元法:
第二积分换元:
分部积分法
和不定积分的分部积分法类似
反常积分
无穷区间
无界函数
应用
几何应用
物理应用
常微分方程
微分方程概念
- 微分方程:包含未知函数及其导数(或微分)的方程
- 常微分方程:只含有一个自变量的微分方程
- 偏微分方程:含有多个自变量的微分方程
- 微分方程的阶:方程中出现的最高阶导数的阶数
- 线性微分方程:微分方程中指数幂都为1
- 微分方程的解:代入方程后使等式成立的函数
- 通解:含与方程阶数相等的任意常数的解
- 特解:通过初始条件确定通解中的常数后得到的唯一解
- 初始条件:题目给出来的条件
一阶微分方程
- 可分离变量的微分方程:可以将两个变量分离到等号两边的微分方程
求可分离变量的微分方程的通解:两边求不定积分
例如:
齐次方程
齐次方程:y/x同时出现的微分方程
例如下列微分方程都为齐次方程:
求齐次方程通解的三板斧:
- 使用三板斧化简后,两边求不定积分,最后将回代消掉u
例如:
一阶线性微分方程
概念:
一阶线性微分方程的形式:
- 当Q(x) = 0,称为 一阶齐次线性微分方程
- 当Q(x) != 0,称为 **一阶非齐次线性微分方程,**通解公式:
(要记住)
例如:
二阶常系数齐次线性微分方程
形如下图的微分方程称为二阶常系数线性微分方程
- 其中,当f(x) =0称为齐次,否则为非齐次
二阶常系数齐次线性微分方程的通解(要记住):
多元函数微分法
形如 z = f(x,y)的函数称为二元函数
多元函数的极限
- 一元函数:
- 一元函数的定义域是函数f(x)在x轴上的投影
- 对于一元函数的极限,x轴所有方向只有左右,所以极限是左右逼近相等,则极限存在
- 二元函数
- 二元函数的定义域是函数f(x,y)在(x,y)面上的投影
- 对于二元函数的极限,(x,y)面所有方向是在该面上所有方向,所以极限是在(x,y)面上任意方向逼近(x0,y0)相等,则极限存在
- 一元函数求极限的方法在多元函数中依然适用,如两个重要极限,洛必达法则等
例如,判断二元函数极限不存在:
例如,使用重要极限求二元函数的极限:
偏导数
一元函数的导数:
- 定义:
- 几何意义:函数曲线在点(a,f(a))的斜率
多元函数的偏导数:
- 定义:
![]()
- 固定那个变量就是将该变量看作一个常数,将求一个二元函数的导数转换为求一元函数的导数
- 对x的偏导数可以理解为,只对x求导数,把y看作一个常数;对y求偏导同理。
- 几何意义:
- x的偏导数:曲面在点(a,b)沿x轴方向的斜率
- y的偏导数:曲面在点(a,b)沿y轴方向的斜率
例如:
- 在某点的偏导数:求出对x和对y的偏导数,分别代入该点
全微分
对于二元函数,其全微分公式如下:
例如:
- 如果多元函数可微,则偏导数必然存在;如果偏导数存在,多元函数不一定可微
- 即:偏导数存在是可微的必要不充分条件
- 如果二元函数在(x,y)某个邻域域内有连续的偏导数,则二元函数在(x,y)处可微
重积分
二重积分
概念
二重积分是用来求解曲顶柱体的体积的,记作:
,f(x,y)叫做被积函数,dxdy叫做面积元素,D叫做积分区域
性质
二重积分的计算
直角坐标系
积分区域D有两种表示方式,X型区域和Y型区域
例如:
求二重积分:
极坐标
极坐标:使用距离和角度,确定一个在二维平面上的点的位置
例如:
无穷级数
- 无穷级数是无限项的和,分为常数项级数和函数项级数
- 常数项级数是每项均为常数的无穷级
无穷级数的收敛和发散:
- 通过前n项判断无穷级数发散还是收敛
- 如果前n项和为一个常数,则收敛
- 如果前n项和为无穷或不存在,则发散
数列和无穷级数:
等差级数只有在公差等于0时收敛
等比级数只有在公比小于1时收敛:
性质:
- 如果一个无穷级数收敛于S,那么该无穷级数每项乘k收敛于kS
- 收敛于A 加减 收敛于B = 收敛于A加减B;收敛 加减 发散 = 发散
- 收敛的无穷级数,改变有限项后依然收敛,但是收敛的值改变
- 无穷级数加括号后收敛,原级数未必收敛;无穷级数加括号后发散,原级数必定发散
- 收敛的无穷级数,通项一定趋于0;通项趋于0,无穷级数未必收敛
(补充)要用到的高中数学知识
数
绝对值
相反数:A+B=0,例如 4和-4
倒数:A*B=1,例如 2 和 0.5
分数
两个无理数:
复数:
对数和指数
幂运算法则:
对数运算法则:
ln e = 1
对数和幂指数转换:
数集和不等式
数轴和不等式:
常见数集:
- 自然数(N):非负整数
- 整数(Z)
- 实数®:有理数与无理数的总称
- 有理数(Q):可以表示为两个整数之比的数
- 无理数:无法表示为两个整数之比的实数
交集和并集:
数列
裂项相消:
充分必要条件
多项式
多项式基本公式:
多项式的十字相乘法:
一元二次方程
一元二次方程求根公式:
直线、圆、椭圆
直线方程:
圆和椭圆标准方程:
切线和法线垂直,斜率相乘=-1
扇形面积公式:
三角函数
特殊角的三角函数值:
互余角关系:
诱导公式:
1.终边相等的角同一三角函数相等,例如:
2.Π+a的三角函数值与a的三角函数值关系:
三角函数的和差化积公式:
三角函数两角和公式:
三角函数的倍角和半角公式:
排列组合
排列:
- 形如:40人排3个位子,或3个人排40个位子,有40×39×38种可能,记作:
- 有序安排,每个人的位子不同
组合:
- 形如:40人选择3人,有40×39×38/6中可能,记作:
- 无序选择,先选后选都是选
关系: