专升本数学知识点看这一篇就够了!(持续更新中...)

持续更新中,最新版本可以查看语雀

笔记参考:


函数、极限与连续

函数

概念

函数是一种映射关系,它将一个集合中的每个元素(称为自变量)唯一地对应到另一个集合中的一个元素(称为因变量)。

定义域和值域:

  • 定义域:函数中所有允许的输入值(自变量 x)的集合,表示函数在哪些输入值上有定义。
  • 值域:函数所有可能的输出值(因变量 y)的集合,表示函数能够取到的所有结果。

常见函数的自然定义域

R表示全体实数

特殊函数

  • 分段函数:在定义域不同的区间用不同的解析式表示的函数
  • 隐函数:

  • 抽象函数:

题型3,求抽象函数的定义域,例如:

题型4,求抽象函数的表达式:

函数的基本特性

有界性

单调性

奇偶性

周期性

反函数和复合函数

反函数

反函数性质:反函数和原函数关于直线关于直线y=x对称

反函数性质:反函数和原函数单调性相同

反函数性质:反函数和原函数奇偶性相同

复合函数

复合函数的性质:

  • 复合函数f[g(x)] 中,f的定义域 包含 g的值域

基本初等函数

常见的函数,一定要记住图像

幂函数

幂运算法则:

指数函数

对数函数

对数运算法则:

三角函数

拓展:

三角函数的关系:

三角函数值表:

反三角函数

极限

无穷小:极限值为0

无穷大:极限值为无穷

数列的极限

收敛数列的性质:

夹逼准则:

题型,使用夹逼准则求数列极限:

函数的极限

概念

函数的极限就是自变量 x趋近于某个值 a时,函数 f(x)趋近于某个值 L。

极限关注的是函数在某一点附近的行为,不能理解极限为函数值域的最大值

数列极限和函数极限的区别和联系:

极限的运算法则

例题:

求极限的一种方法,直接带入法

极限的四则运算性质:

复合函数的极限运算法则:

因式分解求极限❗

根式有理化❗

思路:上下同时乘某式,消掉0因子

例题:

同除最大项❗

思路:上下同时除最大项,消掉无穷

两个重要极限❗

第一重要极限:

使用第一重要极限求极限

第二重要极限:

变式:

使用第二重要极限求极限:

函数的夹逼准则:

无穷小和无穷大

  • 无穷小是函数,是趋近于0的过程
  • 无穷大是函数,是趋近于无穷的过程
无穷小的性质
  • 无穷小的和、差、积仍是无穷小

  • 无穷小与有界函数的积是无穷小

  • 无穷小的常数倍仍是无穷小

  • 无穷小的极限为零

无穷小的比较

常用等价无穷小替换:

无穷小的运算法则

等价无穷小替换:
在求极限时,可以将复杂的无穷小替换为等价的简单无穷小。

例如:

连续

连续的定义

定理:

函数的间断点❗

间断点的分类:

示例:

基本初等函数的连续性

闭区间上的连续函数性质:

  • 一定有最大值和最小值
  • 零点定理:如果连续函数的一边大于0一边小于0,则函数的图像必定经过0
  • 介值定理:零点定理的推论


导数

导数和可导

导数是函数在某一点的瞬时变化率,几何意义是函数在某一点的切线斜率

导数通过极限来定义,表示当自变量的变化量趋近于零时,函数的变化量与自变量变化量的比值的极限。导数的数学表达式如下:

导数的推论(可以不记):

左导数和右导数:

当一个函数存在左导数和右导数且相等时,该函数可导

可导和连续的关系:可导函数必连续

连续 => 左导数=右导数 =>可导

导数性质

基本导数公式❗(第一块的最常考):

导数的四则运算❗:

复合函数求导法则:

分段函数求导法则:两边正常求,中间求左右导数判断是否可导

反函数求导法则:反函数的导数等于原函数导数的倒数

隐函数求导法则:对隐函数方程两边同时对 x 求导,解出或y’

注意,y是x的函数,y对x求导是复合函数求导

参数函数求导法则:

幂指函数求导法则(对数求导法)

注意,(ln y)'对x求导是复合函数求导

求高阶导数:

  • 求比其低一阶的导数
  • y’’ = (y’)‘,y’‘’ = (y’‘)’,…

例如:

微分

概念:函数在某点附近的微小变化的引起的改变量的近似值

导数和微分的关系:微分和导数密切相关,但微分更侧重于变化量的近似计算,而导数更侧重于变化率的描述

微分的运算法则:和导数的求导法则一致,只需将dx移到右边

微分在近似计算中的应用:

例如:

中值定理

罗尔中值定理

概念:

几何意义:某段连续且存在斜率的函数中,如果存在两点的函数值相等,那么两点中间至少有一点切线平行于x轴(斜率为0)

应用:

  • 判断二元函数方程是否存在实根

拉格朗日中值定理

几何意义:某段连续且存在斜率的函数中,那么两点中间至少有一点的切线平行于ab(斜率相等)

洛必达法则

定理:

前提:

导数的应用

函数的单调性

定义:函数在某一区间的上升和下降的趋势

函数的导数和单调性的关系:

  • 导数的几何含义为函数的斜率,因此:
    • 导数为正数,单调递增
    • 导数为负数,单调递减

函数凹凸性

定义:函数在某一区间是凹还是凸的

例如:

  • 二阶导数的几何含义为函数的凹凸性,因此:
    • 二阶导数为正数,凹
    • 二阶导数为负数,凸

函数的极值和最值

  • 极值是与它的两侧相比,大于两侧是极大值,小于两侧是极小值;最值则是函数在定义域或指定区间内的最大最小值

极值定理:

  • 通过函数的导数的正负,可以判断函数单调性,从而取得极值
  • 如果函数在某点附近可导,如果该点左侧单调递增,右侧单调递减,则函数在该点有极大值;如果该点左侧单调递减,右侧单调递增,则函数在该点有极小值
  • 通过函数的一阶和二阶导数,可以判断函数的单调性和凹凸性,从而取得极值
  • 如果函数在某点既不递增又不递减,且该点为凹或凸的中心点,则函数在该点有极值

具体如下:

函数曲线的渐近线

渐进线:

  • 如果无定义点处的极限为无穷,则存在垂直渐近线
  • 如果函数当 x 趋近于 ±∞ 时,极限为0,则存在水平渐近线

示例:



不定积分

概念

积分是导数的逆运算,分为定积分和不定积分两种。

其中,f(x)称为原函数

设原函数的导数为f(x),那么f(x)的全体原函数称为f(x)的不定积分,记作:

例如:

C表示任意常数,常数的导数为0

不定积分的求解

公式

常用:

其他:

性质

第一类换元法(凑微分)

思路:

例如:

  • dx中,x可以任意加减常数,求出来的依然是全体原函数

第二类换元法

根式代换:设根式下面的东西为t,解出x=f(t),代入原式,最后再将t用t=g(x)替换

示例:

三角代换:

根据公式消元:

示例:

分部积分法❗

公式:

示例:



定积分

概念

如何求一个任意图形的面积?

任何图形都可以分隔为多个曲边梯形

  • 在一个特定区间 [a,b] 上对函数 f(x) 进行积分的过程
  • 用于计算特定区间上的累积量或总和

牛顿莱布尼兹公式

示例:

性质

求解

换元积分法

定积分的换元法和不定积分的换元法类似,但是当变量代换后,积分上下限也要相应变换

第一积分换元法:

第二积分换元:

分部积分法

和不定积分的分部积分法类似

反常积分

无穷区间

无界函数

应用

几何应用

物理应用



常微分方程

微分方程概念

  • 微分方程:包含未知函数及其导数(或微分)的方程
  • 常微分方程:只含有一个自变量的微分方程
  • 偏微分方程:含有多个自变量的微分方程
  • 微分方程的阶:方程中出现的最高阶导数的阶数
  • 线性微分方程:微分方程中指数幂都为1
  • 微分方程的解:代入方程后使等式成立的函数
  • 通解:含与方程阶数相等的任意常数的解
  • 特解:通过初始条件确定通解中的常数后得到的唯一解
  • 初始条件:题目给出来的条件

一阶微分方程

  • 可分离变量的微分方程:可以将两个变量分离到等号两边的微分方程

求可分离变量的微分方程的通解:两边求不定积分

例如:

齐次方程

齐次方程:y/x同时出现的微分方程

例如下列微分方程都为齐次方程:

求齐次方程通解的三板斧:

  • 使用三板斧化简后,两边求不定积分,最后将回代消掉u

例如:

一阶线性微分方程

概念:

一阶线性微分方程的形式:

  • 当Q(x) = 0,称为 一阶齐次线性微分方程
  • 当Q(x) != 0,称为 **一阶非齐次线性微分方程,**通解公式:

(要记住)

例如:

二阶常系数齐次线性微分方程

形如下图的微分方程称为二阶常系数线性微分方程

  • 其中,当f(x) =0称为齐次,否则为非齐次

二阶常系数齐次线性微分方程的通解(要记住):



多元函数微分法

形如 z = f(x,y)的函数称为二元函数

多元函数的极限

  • 一元函数:
    • 一元函数的定义域是函数f(x)在x轴上的投影
    • 对于一元函数的极限,x轴所有方向只有左右,所以极限是左右逼近相等,则极限存在
  • 二元函数
    • 二元函数的定义域是函数f(x,y)在(x,y)面上的投影
    • 对于二元函数的极限,(x,y)面所有方向是在该面上所有方向,所以极限是在(x,y)面上任意方向逼近(x0,y0)相等,则极限存在
  • 一元函数求极限的方法在多元函数中依然适用,如两个重要极限,洛必达法则等

例如,判断二元函数极限不存在:

例如,使用重要极限求二元函数的极限:

偏导数

一元函数的导数:

  • 定义:
  • 几何意义:函数曲线在点(a,f(a))的斜率

多元函数的偏导数:

  • 定义:
    • 固定那个变量就是将该变量看作一个常数,将求一个二元函数的导数转换为求一元函数的导数
    • 对x的偏导数可以理解为,只对x求导数,把y看作一个常数;对y求偏导同理。
  • 几何意义:
    • x的偏导数:曲面在点(a,b)沿x轴方向的斜率
    • y的偏导数:曲面在点(a,b)沿y轴方向的斜率

例如:

  • 在某点的偏导数:求出对x和对y的偏导数,分别代入该点

全微分

对于二元函数,其全微分公式如下:

例如:

  • 如果多元函数可微,则偏导数必然存在;如果偏导数存在,多元函数不一定可微
  • 即:偏导数存在是可微的必要不充分条件
  • 如果二元函数在(x,y)某个邻域域内有连续的偏导数,则二元函数在(x,y)处可微


重积分

二重积分

概念

二重积分是用来求解曲顶柱体的体积的,记作:

,f(x,y)叫做被积函数,dxdy叫做面积元素,D叫做积分区域

性质

二重积分的计算

直角坐标系

积分区域D有两种表示方式,X型区域和Y型区域

例如:

求二重积分:

极坐标

极坐标:使用距离和角度,确定一个在二维平面上的点的位置

例如:



无穷级数

  • 无穷级数是无限项的和,分为常数项级数和函数项级数
  • 常数项级数是每项均为常数的无穷级

无穷级数的收敛和发散:

  • 通过前n项判断无穷级数发散还是收敛
  • 如果前n项和为一个常数,则收敛
  • 如果前n项和为无穷或不存在,则发散

数列和无穷级数:

等差级数只有在公差等于0时收敛

等比级数只有在公比小于1时收敛:

性质:

  • 如果一个无穷级数收敛于S,那么该无穷级数每项乘k收敛于kS
  • 收敛于A 加减 收敛于B = 收敛于A加减B;收敛 加减 发散 = 发散
  • 收敛的无穷级数,改变有限项后依然收敛,但是收敛的值改变
  • 无穷级数加括号后收敛,原级数未必收敛;无穷级数加括号后发散,原级数必定发散
  • 收敛的无穷级数,通项一定趋于0;通项趋于0,无穷级数未必收敛

(补充)要用到的高中数学知识

绝对值

相反数:A+B=0,例如 4和-4

倒数:A*B=1,例如 2 和 0.5

分数

两个无理数:

复数:

对数和指数

幂运算法则:

对数运算法则:

ln e = 1

对数和幂指数转换:

数集和不等式

数轴和不等式:

常见数集:

  • 自然数(N):非负整数
  • 整数(Z)
  • 实数®:有理数与无理数的总称
  • 有理数(Q):可以表示为两个整数之比的数
  • 无理数:无法表示为两个整数之比的实数

交集和并集:

数列

裂项相消:

充分必要条件

多项式

多项式基本公式:

多项式的十字相乘法:

一元二次方程

一元二次方程求根公式:

直线、圆、椭圆

直线方程:

圆和椭圆标准方程:

切线和法线垂直,斜率相乘=-1

扇形面积公式:

三角函数

特殊角的三角函数值:

互余角关系:

诱导公式:

1.终边相等的角同一三角函数相等,例如:

2.Π+a的三角函数值与a的三角函数值关系:

三角函数的和差化积公式:

三角函数两角和公式:

三角函数的倍角和半角公式:

排列组合

排列:

  • 形如:40人排3个位子,或3个人排40个位子,有40×39×38种可能,记作:
  • 有序安排,每个人的位子不同

组合:

  • 形如:40人选择3人,有40×39×38/6中可能,记作:
  • 无序选择,先选后选都是选

关系:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值