# Prime Ring Problem

Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).

Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.

Sample Input
6 8

Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2

Source

#include <iostream>
#include <algorithm>
#include <string.h>
#include <cmath>
using namespace std;
const int maxn=25;
bool visit[maxn];
int num[maxn];
int n;

bool prime(int n)
{
if(n==1)
return false;
if(n==2)
return true;
if(n%2==0)
return false;
for(int i=3;i<=(int)sqrt(n);i+=2)
if(n%i==0)
return false;
return true;
}

void dfs(int step)
{
if(step>n&&prime(num[n]+num[1]))
{
for(int i=1;i<=n-1;i++)
cout<<num[i]<<" ";
cout<<num[n]<<endl;
}
for(int i=2;i<=n;i++)
{
num[step]=i;
if(prime(num[step]+num[step-1])&&!visit[i])//继续向下搜索的条件
{
visit[i]=1;
dfs(step+1);
visit[i]=0;
}
}
}
int main()
{
int c=1;
while(cin>>n)
{
cout<<"Case "<<c++<<":"<<endl;
memset(visit,0,sizeof(visit));
num[1]=1;
dfs(2);
cout<<endl;
}
return 0;
}


• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120