K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本划分为K个簇。其工作原理如下:
- 初始化:随机选择K个样本作为初始聚类中心。
- 分配:将所有样本分配到距离最近的聚类中心所在的簇。
- 更新:计算每个簇的新中心,即该簇所有样本的平均值。
- 重复:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定的迭代次数。
K-均值聚类的优点包括:
- 简单易于实现和理解。
- 能够处理大数据集。
- 能够有效地处理高维数据。
K-均值聚类的缺点包括:
- 需要预先指定簇的数量K,不适用于簇的数量不确定的情况。
- 对初始聚类中心的选择敏感,可能陷入局部最优解。
- 对离群点敏感,可能导致簇分配错误。
总的来说,K-均值聚类是一种简单且有效的聚类算法,适用于处理较大规模的数据集,但在处理复杂数据集或需要确定簇数量的情况下存在局限性。