讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本划分为K个簇。其工作原理如下:

  1. 初始化:随机选择K个样本作为初始聚类中心。
  2. 分配:将所有样本分配到距离最近的聚类中心所在的簇。
  3. 更新:计算每个簇的新中心,即该簇所有样本的平均值。
  4. 重复:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定的迭代次数。

K-均值聚类的优点包括:

  • 简单易于实现和理解。
  • 能够处理大数据集。
  • 能够有效地处理高维数据。

K-均值聚类的缺点包括:

  • 需要预先指定簇的数量K,不适用于簇的数量不确定的情况。
  • 对初始聚类中心的选择敏感,可能陷入局部最优解。
  • 对离群点敏感,可能导致簇分配错误。

总的来说,K-均值聚类是一种简单且有效的聚类算法,适用于处理较大规模的数据集,但在处理复杂数据集或需要确定簇数量的情况下存在局限性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值