ubuntu 18.04 安装NVIDIA驱动 cuda/cudnn + tensorflow-gpu + pytorch

本文介绍了在Ubuntu 18.04系统上安装NVIDIA驱动、CUDA、CUDNN以及TensorFlow-GPU和PyTorch的详细步骤。通过禁用nouveau驱动、安装依赖,然后安装NVIDIA驱动。接着使用Anaconda安装Python3.6和TensorFlow-GPU,自动下载CUDA Toolkit和CUDNN。最后,安装PyTorch并验证GPU支持。安装过程中需要注意版本匹配和依赖问题。
摘要由CSDN通过智能技术生成

电脑换了华硕新主板,需要重装系统,用的Ubuntu18.04的系统,电脑用的显卡是GTX1080Ti。在新系统中装显卡驱动过程中遇到很多坑,中间无奈搞乱环境又重装了一次系统,再次尝试,终于成功。整个过程失败次数很多,参考的教程感觉自己步步都做对了,但是最后就是不能成功运行。配置系统这种事情确实比较麻烦,心态要对,遇到问题上网搜索方法,最终总归都能解决。

接下来接讲讲我装NVIDIA驱动到装tensorflow-gpu和pytorch的方法,大家硬件和系统都有所区别,不能保证我的方法你不一定能成功,但是希望能值的大家借鉴。
不得不说,我所使用的方法大部分都是参考其他无私博主的贡献,主要参考的这篇博客

先说一句,Python我是用的是 Anaconda3-5.2.0-Linux-x86_64.sh,因为这里对应的是Python3.6。最新版的Anaconda对应的是Python3.7,但是Python3.7目前为止还不能兼容tensorflow,所以请不要下载最新版本的Anaconda。

推荐大家使用anaconda来代替原版python,它预置了很多数据分析相关的包,包括scipy和matplotlib等,这些模块你自己安装可能会出现很多问题。
另外,自带的conda安装python包会方便很多,因为它针对数据分析相关模块做了很多优化,会检测并自动安装环境,很多方便的功能是pip做不到的。
包括之后的cuda、cudnn安装都是根据系统环境安装的,比自己手动装靠谱的多,不容易出错。

装NVIDIA驱动

首先,系统最好是新系统,NVIDIA驱动所需的依赖比较多,而且对版本都有要求,否则会产生各种报错。
官网下载NVIDIA驱动,下载地址:https://www.nvidia.cn/Download/index.aspx?lang=cn
这里选择好第一项产品类型后,需要等一会才能加载后面的选项,网络不好的话更需要耐心等待。
NVIDIA驱动下载1

NVIDIA驱动下载2

截止到发文2018.12.26,我下载的版本是 NVIDIA-Linux-x86_64-410.7

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值