线性代数-----行列式的性质

行列式的性质

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \\ a_{21} \quad a_{22} \quad \cdots \quad a_{2n} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| D=a11a12a1na21a22a2nan1an2ann

D T = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋯ ⋮ a 1 n a 2 n ⋯ a n n ∣ D^T=\left| \begin{matrix} a_{11} \quad a_{21} \quad \cdots \quad a_{n1} \\ a_{12} \quad a_{22} \quad \cdots \quad a_{n2} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{1n} \quad a_{2n} \quad \cdots \quad a_{nn} \end{matrix} \right| DT=a11a21an1a12a22an2a1na2nann

性质1: D = D T D=D^T D=DT

在行列式中, 行和列的位置是对称的, 对行成立的, 对列也成立.因此下面只介绍关于行列式的行的性质 .

性质2: 互换两行, 行列式变号.即

$\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{j1} \quad a_{j2} \quad \cdots \quad a_{jn} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right|= -\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{j1} \quad a_{j2} \quad \cdots \quad a_{jn} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| $

思考如何证明?

考虑三阶行列式交换2行的结果.

$\left| \begin{matrix} a_{11} \quad a_{12} \quad a_{13} \ a_{21} \quad a_{22} \quad a_{23} \ a_{31} \quad a_{32} \quad a_{33} \end{matrix} \right| \rightarrow \left| \begin{matrix} a_{21} \quad a_{22} \quad a_{23} \ a_{11} \quad a_{12} \quad a_{13} \ a_{31} \quad a_{32} \quad a_{33} \end{matrix} \right| $

= a 21 a 12 a 33 + a 11 a 32 a 23 + a 22 a 13 a 31 − a 31 a 12 a 23 − a 32 a 13 a 21 − a 11 a 22 a 33 =a_{21}a_{12}a_{33} +a_{11}a_{32}a_{23} + a_{22}a_{13}a_{31} - a_{31}a_{12}a_{23} - a_{32}a_{13}a_{21} - a_{11}a_{22}a_{33} =a21a12a33+a11a32a23+a22a13a31a31a12a23a32a13a21a11a22a33

原始的行列式 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 − a 31 a 22 a 13 − a 32 a 23 a 11 − a 33 a 21 a 12 = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} =a11a22a33+a12a23a31+a21a32a13a31a22a13a32a23a11a33a21a12

对 原 式 按 照 第 一 行 展 开 a 11 ( − 1 ) ( 1 + 1 ) ∣ a 22 a 23 a 32 a 33 ∣ + a 12 ( − 1 ) ( 1 + 2 ) ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ( − 1 ) ( 1 + 3 ) ∣ a 21 a 22 a 31 a 32 ∣ 对原式按照第一行展开a_{11}(-1)^(1 + 1)\left| \begin{matrix} a_{22} \quad a_{23} \\ a_{32} \quad a_{33}\end{matrix} \right| + a_{12}(-1)^(1 + 2)\left| \begin{matrix} a_{21} \quad a_{23} \\ a_{31} \quad a_{33}\end{matrix} \right| + a_{13}(-1)^(1 + 3)\left| \begin{matrix} a_{21} \quad a_{22} \\ a_{31} \quad a_{32}\end{matrix} \right| a11(1)(1+1)a22a23a32a33+a12(1)(1+2)a21a23a31a33+a13(1)(1+3)a21a22a31a32

对 交 换 之 后 的 矩 阵 按 照 第 二 行 展 开 a 11 ( − 1 ) ( 2 + 1 ) ∣ a 22 a 23 a 32 a 33 ∣ + a 12 ( − 1 ) ( 2 + 2 ) ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ( − 1 ) ( 2 + 3 ) ∣ a 21 a 22 a 31 a 32 ∣ 对交换之后的矩阵按照第二行展开 a_{11}(-1)^(2 + 1)\left| \begin{matrix} a_{22} \quad a_{23} \\ a_{32} \quad a_{33}\end{matrix} \right| + a_{12}(-1)^(2 + 2)\left| \begin{matrix} a_{21} \quad a_{23} \\ a_{31} \quad a_{33}\end{matrix} \right| + a_{13}(-1)^(2 + 3)\left| \begin{matrix} a_{21} \quad a_{22} \\ a_{31} \quad a_{32}\end{matrix} \right| a11(1)(2+1)a22a23a32a33+a12(1)(2+2)a21a23a31a33+a13(1)(2+3)a21a22a31a32

推论: 若行列式中有两行元素完全相同, 则行列式为0.

∣ D ∣ = − ∣ D ∣ ⇒ 0 |D| = -|D| \Rightarrow 0 D=D0

A i j 为 元 素 a i j 的 代 数 余 子 式 , 则 有 A_{ij}为元素a_{ij}的代数余子式, 则有 Aijaij,

a j 1 A i 1 + a j 2 A i 2 + ⋯ + a j n A i n = 0 ( i ≠ j ) a_{j1}A_{i1} +a_{j2}A_{i2}+ \cdots + a_{jn}A_{in} = 0 (i \neq j) aj1Ai1+aj2Ai2++ajnAin=0(i=j)

怎么证明,考虑下面行列式

∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| a11a12a1nai1ai2ainai1ai2ainan1an2ann

这个行列式第i行和第j行的元素相同, 根据第i行展开可得 D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n D=a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} D=ai1Ai1+ai2Ai2++ainAin根据性质2的推论, 行列式中有两行元素完全相同,行列式的值为0, 所以 D = 0 D=0 D=0, 又因为第i行和第j行的元素相同, 所以 a i 1 = a j 1 , a i 2 = a j 2 ⋯ a i n = a j n a_{i1} = a_{j1}, a_{i2}=a{j2} \cdots a_{in}=a_{jn} ai1=aj1,ai2=aj2ain=ajn带入到上面的式子得到 D = a j 1 A i 1 + a j 2 A i 2 + ⋯ + a j n A i n = 0 D=a_{j1}A_{i1} + a_{j2}A_{i2} + \cdots + a_{jn}A_{in}=0 D=aj1Ai1+aj2Ai2++ajnAin=0

即行列式中某一行(第j行)的元素与第i行元素的的代数余子式乘积之和是0, 同理列也一样.

可得

a j 1 A i 1 + a j 2 A i 2 + ⋯ + a j n A i n = 0 ( i ≠ j ) a_{j1}A_{i1} +a_{j2}A_{i2}+ \cdots + a_{jn}A_{in} = 0 (i \neq j) aj1Ai1+aj2Ai2++ajnAin=0(i=j)

a j 1 A i 1 + a j 2 A i 2 + ⋯ + a j n A i n = D ( i = j ) a_{j1}A_{i1} +a_{j2}A_{i2}+ \cdots + a_{jn}A_{in} = D (i = j) aj1Ai1+aj2Ai2++ajnAin=D(i=j)

性质3: 用数k乘行列式中某一行的所有元素, 等于用k乘此行列式.即:

$\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right|= k\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| $

推论: 某一行的所有元素的公因子可以提到行列式符号的外面.

比如 ∣ − 8 4 − 6 2 1 − 1 16 − 2 7 ∣ = 2 ∣ − 4 2 − 3 2 1 − 1 16 − 2 7 ∣ = 4 ∣ − 2 2 − 3 1 1 − 1 8 − 2 7 ∣ \left| \begin{matrix} -8 \quad 4 \quad -6 \\ 2 \quad 1 \quad -1 \\ 16 \quad -2 \quad 7 \end{matrix}\right| = 2 \left| \begin{matrix} -4 \quad 2 \quad -3 \\ 2 \quad 1 \quad -1 \\ 16 \quad -2 \quad 7 \end{matrix}\right|= 4 \left| \begin{matrix} -2 \quad 2 \quad -3 \\ 1 \quad 1 \quad -1 \\ 8 \quad -2 \quad 7 \end{matrix}\right| 8462111627=24232111627=4223111827

性质4: 行列式某一行元素加上另一行对应元素的k倍, 行列式的值不变.即:

$\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} + ka_{j1} \quad a_{i2} \quad \cdots \quad a_{in} + ka_{jn} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{j1} \quad a_{j2} \quad \cdots \quad a_{jn} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right|= \left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{j1} \quad a_{j2} \quad \cdots \quad a_{jn} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| $

根据第i行展开 ( a i 1 + k a j 1 ) A i 1 + ( a i 2 + k a j 2 ) A i 2 + ⋯ + ( a i n + k a j n ) A i n (a_{i1} + ka_{j1})A_{i1} + (a_{i2} + ka_{j2})A_{i2} + \cdots + (a_{in} + ka_{jn})A_{in} (ai1+kaj1)Ai1+(ai2+kaj2)Ai2++(ain+kajn)Ain

展 开 : a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n + k a j 1 A i 1 + ⋯ + k a j n A i n 展开:a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} +ka_{j1}A_{i1} + \cdots + ka_{jn}A_{in} :ai1Ai1+ai2Ai2++ainAin+kaj1Ai1++kajnAin

根 据 根据 a j 1 A i 1 + a j 2 A i 2 + ⋯ + a j n A i n = 0 ( i ≠ j ) 得 到 结 论 a_{j1}A_{i1} +a_{j2}A_{i2}+ \cdots + a_{jn}A_{in} = 0 (i \neq j)得到结论 aj1Ai1+aj2Ai2++ajnAin=0(i=j)

性质5: 若行列式某一行的元素是两数之和,则行列式可拆成两个行列式的和.即:

$\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} + b_1 \quad a_{i2}+ b_2 \quad \cdots \quad a_{in}+b_n \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right|= \left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| + \left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \ \vdots \quad \vdots \quad \cdots \quad \vdots \ b_1 \quad b_2 \quad \cdots \quad b_n \ \vdots \quad \vdots \quad \cdots \quad \vdots \ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right| $

推论: 若行列式某一行的元素都是m个元素的和. 则行列式可以写成m个行列式的和.

重点: 性质2, 性质3, 性质4.

练习1: 计算 D = ∣ 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 ∣ D=\left| \begin{matrix} 3 \quad 2 \quad 2 \quad 2 \\ 2 \quad 3 \quad 2 \quad 2 \\ 2\quad 2\quad 3 \quad 2 \\ 2 \quad 2 \quad 2 \quad 3\end{matrix} \right| D=3222232222322223

分析: 各行元素之和为一定数, 利用性质4, 将2,3,4行全部加到第1行,然后利用性质3的推论, 将公因子提出来.

D = ∣ 9 9 9 9 2 3 2 2 2 2 3 2 2 2 2 3 ∣ = 9 ∣ 1 1 1 1 2 3 2 2 2 2 3 2 2 2 2 3 ∣ D=\left| \begin{matrix} 9 \quad 9 \quad 9 \quad 9 \\ 2 \quad 3 \quad 2 \quad 2 \\ 2\quad 2\quad 3 \quad 2 \\ 2 \quad 2 \quad 2 \quad 3\end{matrix} \right| = 9\left| \begin{matrix} 1 \quad 1 \quad 1 \quad 1 \\ 2 \quad 3 \quad 2 \quad 2 \\ 2\quad 2\quad 3 \quad 2 \\ 2 \quad 2 \quad 2 \quad 3\end{matrix} \right| D=9999232222322223=91111232222322223

然后第一行乘上-2和后面的各行相加得到

D = 9 ∣ 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 ∣ = 9 D=9\left| \begin{matrix} 1 \quad 1 \quad 1 \quad 1 \\ 0 \quad 1 \quad 0 \quad 0 \\ 0\quad0\quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 1\end{matrix} \right|=9 D=91111010000100001=9

练习2: 设 α + β + γ = 0 , 求 行 列 式 ∣ α β γ γ α β β γ α ∣ 的 值 \alpha + \beta + \gamma=0, 求行列式\left| \begin{matrix} \alpha \quad \beta \quad \gamma \\ \gamma \quad \alpha \quad \beta \\ \beta \quad \gamma \quad \alpha \end{matrix} \right|的值 α+β+γ=0,αβγγαββγα

练习3: D = ∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ D=\left| \begin{matrix} 3 \quad 1 \quad -1 \quad 2 \\ -5 \quad 1 \quad 3 \quad -4 \\ 2\quad 0 \quad 1 \quad -1 \\ 1 \quad -5 \quad 3 \quad -3\end{matrix} \right| D=3112513420111533

第二列有0元素,可以想办法把第二列元素尽可能变成0, 然后按照第二列展开.

根据性质4, 第一行乘-1, 加到第二行, 第一行乘5, 加到第4行

D = ∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ = ∣ 3 1 − 1 2 − 8 0 4 − 6 2 0 1 − 1 16 0 − 2 − 7 ∣ D=\left| \begin{matrix} 3 \quad 1 \quad -1 \quad 2 \\ -5 \quad 1 \quad 3 \quad -4 \\ 2\quad 0 \quad 1 \quad -1 \\ 1 \quad -5 \quad 3 \quad -3\end{matrix} \right| = \left| \begin{matrix} 3 \quad 1 \quad -1 \quad 2 \\ -8 \quad 0 \quad 4 \quad -6 \\ 2\quad 0 \quad 1 \quad -1 \\ 16 \quad 0 \quad -2 \quad -7\end{matrix} \right| D=3112513420111533=31128046201116027

= − ∣ − 8 4 − 6 2 1 − 1 16 − 2 7 ∣ = − ∣ − 16 0 − 2 2 1 − 1 20 0 5 ∣ = − ∣ − 16 − 2 20 5 ∣ = 40 =-\left| \begin{matrix} -8 \quad 4 \quad -6 \\ 2 \quad 1 \quad -1 \\ 16 \quad -2 \quad 7 \end{matrix}\right| = - \left| \begin{matrix} -16 \quad 0 \quad -2 \\ 2 \quad 1 \quad -1 \\ 20 \quad 0 \quad 5 \end{matrix}\right| = - \left| \begin{matrix} -16 \quad -2 \\ 20 \quad 5 \end{matrix}\right| = 40 =8462111627=16022112005=162205=40

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值