理解扫描线

求覆盖的面积?

我们将图竖着切成几段

该段的面积就是这条线的长度*到下一段的距离

我们把每一条边给定一个属性,这个矩形的左面边定义为入边,给一个+1的值,右边的边定义为出边,给一个-1的值

我们维护当前有多少个点的值是大于0的

什么意思

 第一次 a[3]=a[4]=a[5]=1 面积2*1=2

第二次a[5]=1 a[4]=2 a[3]=2 a[2]=1 a[1]=1 面积4*1=4

第三次 a[5]=1 a[4]=2  a[3]=3 a[2]=2 a[1]=1 a[0]=1 面积5*1=5

第四次 a[5]=0 a[4]=1 a[3]=2 a[2]=2 a[1]=1 a[0]=1 面积4*1=4

于是这样加加减减 我们能不能用线段树来维护呢

线段树的范围是0 - 最高点的纵坐标 图中即为0-7

线段树表示的值即为'这个点出现的次数'(上面的a)

这么一来

第一次 -> update(3,5,1) -> 把3-5的值增加1

...

希望大家能够理解


代码

#include<bits/stdc++.h>
#define N 100005
using namespace std;
struct Node{int l,r,cover;double len;}t[N<<2];
//线段树
struct Line{double x,y1,y2;int flag;}l[N<<1];
//线段
double Y[N<<1];
//离散化
int n,tot;
double ans;
bool cmp(Line a,Line b){
	if(a.x==b.x) return a.y1<b.y1;
	return a.x<b.x;
}
void build(int o,int l,int r){
	t[o].l=l,t[o].r=r;
	if(l==r-1) return;
	int mid=(l+r+1)>>1;
	build(o<<1,l,mid),build(o<<1|1,mid,r);//不是mid+1
	//线段树维护的是区间而不是点,例如当l=1,r=4时,分成区间1-3 与 3-4 
	//所以是mid+1 
}
void modify(int o){
	if(t[o].cover>0) t[o].len=Y[t[o].r]-Y[t[o].l];
	else t[o].len=t[o<<1].len+t[o<<1|1].len;
}
void update(int o,double l,double r,int flag){
	if(l<=Y[t[o].l]&&Y[t[o].r]<=r) t[o].cover+=flag;
	else{
		int mid=(t[o].l+t[o].r+1)>>1;
		if(l<Y[mid]) update(o<<1,l,r,flag);
		if(Y[mid]<r) update(o<<1|1,l,r,flag);
	}
	modify(o);
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		double x1,y1,x2,y2;
		scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
		l[i*2-1].x=x1,l[i*2-1].y1=y1,l[i*2-1].y2=y2,l[i*2-1].flag=1;
		l[i*2].x=x2,l[i*2].y1=y1,l[i*2].y2=y2,l[i*2].flag=-1;
		Y[i*2-1]=y1,Y[i*2]=y2;
	}n=n*2;
	sort(Y+1,Y+n+1);
	sort(l+1,l+n+1,cmp);
	//按x排序 
	for(int i=1;i<=n;i++)
		if(Y[i]!=Y[i+1]) Y[++tot]=Y[i];
	//离散化
	build(1,1,tot);
	//建树 
	for(int i=1;i<=n-1;i++){
		update(1,l[i].y1,l[i].y2,l[i].flag);
		ans+=(l[i+1].x-l[i].x)*t[1].len;
	} cout<<ans;return 0;
}

 

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值