毒瘤多项式以及一些毒瘤定理的总结

整理一下这两天学的毒瘤玩意


 二项式反演

若有

g_n = \sum_{i=0}^nC_n^if_i

则有

f_n=\sum_{i=0}^n(-1)^{n-i}C_n^ig_i

因为

\sum_{i=0}^n(-1)^{n-i}C_n^ig_i=\sum_{i=0}^n(-1)^{n-i}C_n^i\sum_{j=0}^iC_i^jf_j=\sum_{j=0}^nf_j \sum_{i=j} ^ n C_n^i C_i^j(-1)^{n-i}=\sum_{j=0}^nf_j \sum_{i=j} ^ n C_n^j C_{n-j}^{i-j}(-1)^{n-i}=\sum_{j=0}^nf_j C_n^j\sum_{i=j} ^ n C_{n-j}^{i-j}(-1)^{n-i}=\sum_{j=0}^nf_j C_n^j\sum_{i=0} ^{n-j} C_{n-j}^{i}(-1)^{n-j-i}=\sum_{j=0}^nf_j C_n^j[j==n]=f_n

有一种应用是错排, fn 表示有n个是错排的方案, gn表示n个的总方案, 枚举有i个没有对上号, 就有

g_n = \sum_{i=0}^nC_n^if_i

反演过后

f_n=\sum_{i=0}^n (-1)^{n-i}C_n^i i!=\sum_{i=0}^n (-1)^{n-i}\frac{n!}{(n-i)!}

除以一个 n! 算概率, 发现是 e ^ -1 的泰勒展开, 太神奇了


FFT

两个核心式子

f(x)=f_1(x^2)+xf_2(x^2)

(w_n^i) ^ 2=w_{n/2}^i 

然后就可以推了, 从下层把答案推到上层


分治FFT

先求出 [l - mid], 在用 [l - mid] 之间的 f 去卷 g, 贡献加到对 [mid+1 - r] 里面


泰勒展开


多项式求逆

求 B(x) 使 A(x)*B(x)\equiv 1(modX^n)

考虑倍增

若有 B'(x) 满足

A(x) * B'(x)\equiv 1(modX^{n/2})

当前的 B(x) 显然满足

A(x)*B(x)\equiv 1(modX^{n/2})

相减, A(x) 显然不要

B(x)-B'(x) \equiv 0 (mod X^{n/2})

两边平方, 都乘A(x)

B(x)-2B'(x)+B'(x)^2*A(x) \equiv 0 (mod X^{n})

所以

B(x) \equiv 2B'(x) - B'(x)^2*A(x) (mod X^{n})


多项式 ln

求 B(x) 满足 B(x)\equiv lnA(x)(modX^n)

同时求导

B'(x)\equiv \frac{1}{A(x)}A'(x)(modX^n)

对于后面那个求导

f(g(x))'=f'(g(x)) * g'(x)

补充一个复合函数的求导(无关)

(f*g)'=f'g+fg'

于是就是多项式求逆


多项式 exp

求 B(x)\equiv e^{A(x)}(modx^n)

同时取对数

ln(B(x))-A(x)\equiv 0(modx^n)

设 F(G(x))=ln(G(x))-A(x)

现在要求这个函数的 0 点

根据牛顿迭代

G(x)=G_0(x)-\frac{F(G_0(x))}{F'(G_0(x))}

而   F'(G(x))=\frac{1}{G(x)}

所以

G(x) \equiv G_0(x)(1-ln(G_0(x))-A(x))(modx^n)

根据玄学定理

每次从 G0 推到 G, n 可以扩大一倍, 于是就类似多项式求逆倍增就好

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值