基于贝叶斯优化对XGBoost分类模型进行参数寻优


一、贝叶斯优化简介

贝叶斯优化(Bayesian Optimization, BO)是一种基于概率模型的全局优化算法,特别适用于计算成本高、非凸、无梯度信息的黑盒函数优化问题。其核心思想是通过构建目标函数的概率代理模型(如高斯过程)动态平衡“探索”与“利用”,以最少的评估次数逼近全局最优解。该方法特别适用于目标函数评估成本较高、导数信息难以获取的场景,如超参数调优、自动机器学习等领域。

在机器学习中,贝叶斯优化广泛应用于超参数调优(如神经网络学习率、XGBoost的树深度等),相较于网格搜索和随机搜索,其效率可提升数倍。例如,用户只需尝试少量参数组合,贝叶斯优化即可通过历史数据推测潜在最优区域,避免盲目搜索。


二、贝叶斯优化的基本原理

  1. 代理模型:贝叶斯优化使用代理模型(如高斯过程)来近似目标函数。代理模型能够捕捉目标函数的不确定性和趋势,为后续的采样点选择提供依据。
  2. 获取函数:获取函数(如UCB、EI、PI)用于衡量候选采样点的潜在价值。它在探索(Exploration)和开发(Exploitation)之间取得平衡,指导优化器选择下一个采样点。
  3. 迭代更新:通过不断观测新的采样点,更新代理模型的后验分布,逐步缩小搜索范围,最终收敛到最优解。

三、基于贝叶斯优化对XGBoost分类模型进行参数寻优的基本步骤

  1. 导入库:导入XGBoost分类器、贝叶斯优化库以及其他必要的库。
  2. 数据准备:加载数据集并划分训练集和测试集。
  3. 定义目标函数:创建一个目标函数,用于评估不同参数组合下的模型性能(如准确率)。
  4. 设置参数范围:确定需要优化的参数及其搜索范围(如max_depthlearning_rate等)。
  5. 初始化贝叶斯优化器:使用BayesianOptimization类初始化优化器,传入目标函数和参数范围。
  6. 执行优化:调用优化器的maximize方法,设置初始随机采样点数量和迭代次数。
  7. 获取最优参数:输出优化器找到的最优参数组合。
  8. 训练最优模型:使用最优参数重新训练XGBoost模型。
  9. 评估模型性能:在测试集上评估最优模型的性能,输出各项评估指标。

四、贝叶斯优化的优缺点

优点:

  1. 高效性:通过代理模型和获取函数,能够以较少的采样点找到全局最优解,尤其适用于评估成本较高的场景。
  2. 灵活性:适用于各种类型的目标函数,无需导数信息,对函数的连续性和平滑性要求较低。
  3. 自适应性:能够根据观测数据动态调整搜索策略,逐步聚焦于潜在的最优区域。

缺点:

  1. 计算复杂度:代理模型(如高斯过程)的训练和更新可能带来较高的计算成本,尤其在高维参数空间中。
  2. 超参数敏感性:贝叶斯优化本身也有一些超参数(如获取函数的参数),需要合理设置以保证优化效果。
  3. 局部最优风险:在某些情况下,可能会陷入局部最优,尤其是在目标函数具有多个峰值时。

五、多分类任务的模型参数寻优示例

wine数据集简介

  • 样本数:178个样本。
  • 特征数:13个特征,包括酒精含量、苹果酸、灰分、镁含量等化学特征。
  • 类别数:3个类别(Class_0Class_1Class_2)。三个类别的样本数分别为59、71和48。
  • 任务类型:多分类问题。

基于wine葡萄酒数据集的贝叶斯优化对XGBoost多分类进行参数寻优代码如下。

# -*- coding: utf-8 -*-
import time
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.datasets import load_wine
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, matthews_corrcoef
from bayes_opt import BayesianOptimization

# 加载数据集
wine = load_wine()
X = wine.data
y = wine.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

print("---------------------使用默认参数----------------------------")
# 初始化XGBoost分类器
model_default = XGBClassifier(random_state=42)
# 训练
model_default.fit(X_train, y_train)
# 预测
y_pred_default = model_default.predict(X_test)

# 输出默认参数下的评估指标
acc_default = accuracy_score(y_test, y_pred_default)
print("默认参数 accuracy:", acc_default)

precision_default = precision_score(y_test, y_pred_default, average='weighted')
recall_default = recall_score(y_test, y_pred_default, average='weighted')
f1_default = f1_score(y_test, y_pred_default, average='weighted')
auc_default = roc_auc_score(y_test, model_default.predict_proba(X_test), multi_class='ovr')
mcc_default = matthews_corrcoef(y_test, y_pred_default)
conf_mat_default = confusion_matrix(y_test, y_pred_default)

print("精确率:", precision_default)
print("召回率:", recall_default)
print("F1分数:", f1_default)
print("AUC:", auc_default)
print("MCC:", mcc_default)
print("混淆矩阵:\n", conf_mat_default)

print("---------------------贝叶斯优化----------------------------")
t1 = time.time()

# 定义目标函数
def xgb_evaluate(max_depth, learning_rate, n_estimators, gamma, min_child_weight, subsample, colsample_bytree):
    model = XGBClassifier(
        max_depth=int(max_depth),
        learning_rate=learning_rate,
        n_estimators=int(n_estimators),
        gamma=gamma,
        min_child_weight=min_child_weight,
        subsample=subsample,
        colsample_bytree=colsample_bytree,
        random_state=42
    )
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    return accuracy

# 定义参数搜索空间
pbounds = {
    'max_depth': (3, 10),
    'learning_rate': (0.01, 0.3),
    'n_estimators': (100, 500),
    'gamma': (0, 1),
    'min_child_weight': (1, 5),
    'subsample': (0.6, 1.0),
    'colsample_bytree': (0.6, 1.0)
}

# 创建贝叶斯优化对象
optimizer = BayesianOptimization(
    f=xgb_evaluate,
    pbounds=pbounds,
    random_state=42
)

# 进行贝叶斯优化
optimizer.maximize(
    init_points=10,
    n_iter=100
)
t2 = time.time()

# 输出最优参数
print("Best parameters:")
print(optimizer.max['params'])
print("time:", t2-t1)

print("---------------------最优模型----------------------------")
# 使用最优参数创建最优模型
best_params = optimizer.max['params']
best_params['max_depth'] = int(best_params['max_depth'])
best_params['n_estimators'] = int(best_params['n_estimators'])
model_best = XGBClassifier(**best_params, random_state=42)

# 训练
model_best.fit(X_train, y_train)
# 预测
y_pred_best = model_best.predict(X_test)

# 输出最优模型下的评估指标
acc_best = accuracy_score(y_test, y_pred_best)
print("最优参数 accuracy:", acc_best)

precision_best = precision_score(y_test, y_pred_best, average='weighted')
recall_best = recall_score(y_test, y_pred_best, average='weighted')
f1_best = f1_score(y_test, y_pred_best, average='weighted')
auc_best = roc_auc_score(y_test, model_best.predict_proba(X_test), multi_class='ovr')
mcc_best = matthews_corrcoef(y_test, y_pred_best)
conf_mat_best = confusion_matrix(y_test, y_pred_best)

print("精确率:", precision_best)
print("召回率:", recall_best)
print("F1分数:", f1_best)
print("AUC:", auc_best)
print("MCC:", mcc_best)
print("混淆矩阵:\n", conf_mat_best)

结果:

---------------------使用默认参数----------------------------
默认参数 accuracy: 0.9333333333333333
精确率: 0.9372549019607842
召回率: 0.9333333333333333
F1分数: 0.9332867494824016
AUC: 0.9969447562040156
MCC: 0.9006794956423804
混淆矩阵:
 [[15  0  0]
 [ 2 16  0]
 [ 0  1 11]]
---------------------贝叶斯优化----------------------------
|   iter    |  target   | colsam... |   gamma   | learni... | max_depth | min_ch... | n_esti... | subsample |
-------------------------------------------------------------------------------------------------------------
| 1         | 1.0       | 0.7498    | 0.9507    | 0.2223    | 7.191     | 1.624     | 162.4     | 0.6232    |
| 2         | 1.0       | 0.9465    | 0.6011    | 0.2153    | 3.144     | 4.88      | 433.0     | 0.6849    |
| 3         | 1.0       | 0.6727    | 0.1834    | 0.09823   | 6.673     | 2.728     | 216.5     | 0.8447    |
| 4         | 1.0       | 0.6558    | 0.2921    | 0.1162    | 6.192     | 4.141     | 179.9     | 0.8057    |
| 5         | 0.9778    | 0.837     | 0.04645   | 0.1862    | 4.194     | 1.26      | 479.6     | 0.9863    |
| 6         | 1.0       | 0.9234    | 0.3046    | 0.03832   | 7.79      | 2.761     | 148.8     | 0.7981    |
| 7         | 1.0       | 0.6138    | 0.9093    | 0.08505   | 7.638     | 2.247     | 308.0     | 0.8187    |
| 8         | 1.0       | 0.6739    | 0.9696    | 0.2348    | 9.576     | 4.579     | 339.2     | 0.9687    |
| 9         | 1.0       | 0.6354    | 0.196     | 0.02312   | 5.277     | 2.555     | 208.5     | 0.9315    |
| 10        | 1.0       | 0.7427    | 0.2809    | 0.1674    | 3.986     | 4.209     | 129.8     | 0.9948    |
| 11        | 1.0       | 0.8216    | 0.06148   | 0.06234   | 3.095     | 1.433     | 391.9     | 0.6019    |
| 12        | 0.9778    | 0.804     | 0.6006    | 0.1867    | 5.738     | 2.776     | 307.5     | 0.9862    |
| 13        | 0.9778    | 0.7703    | 0.3408    | 0.2724    | 6.308     | 4.771     | 218.9     | 0.8722    |
| 14        | 1.0       | 0.9994    | 0.05117   | 0.2369    | 8.196     | 4.169     | 239.7     | 0.7858    |
| 15        | 0.9556    | 0.8224    | 0.9037    | 0.2019    | 4.614     | 4.864     | 258.5     | 0.6111    |
| 16        | 1.0       | 0.9237    | 0.1927    | 0.2567    | 7.557     | 3.652     | 120.5     | 0.7675    |
| 17        | 1.0       | 0.8839    | 0.6315    | 0.2425    | 7.717     | 4.379     | 186.2     | 0.984     |
| 18        | 1.0       | 0.6476    | 0.9503    | 0.2908    | 9.673     | 4.699     | 194.6     | 0.7686    |
| 19        | 0.9778    | 0.9905    | 0.6999    | 0.2718    | 6.113     | 2.632     | 196.2     | 0.6716    |
| 20        | 1.0       | 0.7713    | 0.3273    | 0.1601    | 9.87      | 1.067     | 456.2     | 0.8078    |
| 21        | 1.0       | 0.6026    | 0.4829    | 0.09435   | 7.104     | 3.044     | 163.9     | 0.9866    |
| 22        | 1.0       | 0.9111    | 0.7143    | 0.1836    | 3.182     | 2.768     | 327.8     | 0.8703    |
| 23        | 1.0       | 0.6977    | 0.9757    | 0.05487   | 7.586     | 2.211     | 308.1     | 0.8811    |
| 24        | 1.0       | 0.8008    | 0.3544    | 0.01955   | 9.25      | 2.687     | 309.5     | 0.9137    |
| 25        | 1.0       | 0.7847    | 0.9174    | 0.1206    | 9.923     | 1.246     | 306.4     | 0.7708    |
| 26        | 1.0       | 0.66      | 0.1935    | 0.2694    | 6.358     | 2.123     | 213.5     | 0.8364    |
| 27        | 0.9778    | 0.6993    | 0.4727    | 0.2886    | 6.031     | 3.997     | 183.2     | 0.7178    |
| 28        | 1.0       | 0.8188    | 0.01208   | 0.197     | 4.997     | 1.112     | 215.4     | 0.653     |
| 29        | 1.0       | 0.752     | 0.9638    | 0.1953    | 7.976     | 1.259     | 215.2     | 0.8476    |
| 30        | 1.0       | 0.8827    | 0.281     | 0.1353    | 9.236     | 4.242     | 188.9     | 0.8259    |
| 31        | 1.0       | 0.7799    | 0.1835    | 0.0867    | 6.476     | 4.348     | 177.2     | 0.6801    |
| 32        | 1.0       | 0.8683    | 0.008802  | 0.09046   | 4.25      | 2.069     | 177.7     | 0.7147    |
| 33        | 1.0       | 0.7444    | 0.2723    | 0.1397    | 7.923     | 1.31      | 178.2     | 0.7138    |
| 34        | 1.0       | 0.871     | 0.595     | 0.2764    | 9.554     | 4.653     | 178.4     | 0.8215    |
| 35        | 1.0       | 0.8114    | 0.7704    | 0.1376    | 3.177     | 1.878     | 211.4     | 0.7337    |
| 36        | 1.0       | 0.7784    | 0.2309    | 0.1442    | 3.166     | 4.968     | 210.1     | 0.8778    |
| 37        | 1.0       | 0.8439    | 0.242     | 0.1443    | 7.897     | 4.526     | 210.4     | 0.9131    |
| 38        | 1.0       | 0.7377    | 0.4439    | 0.08786   | 9.274     | 1.075     | 209.2     | 0.7386    |
| 39        | 1.0       | 0.9385    | 0.2052    | 0.1404    | 8.322     | 4.57      | 206.4     | 0.9284    |
| 40        | 1.0       | 0.8947    | 0.4933    | 0.1012    | 3.749     | 4.763     | 205.3     | 0.6867    |
| 41        | 0.9778    | 0.87      | 0.2932    | 0.0637    | 7.851     | 1.043     | 205.1     | 0.9693    |
| 42        | 0.9778    | 0.8556    | 0.9048    | 0.02452   | 9.832     | 2.152     | 212.1     | 0.9728    |
| 43        | 1.0       | 0.9266    | 0.4188    | 0.1687    | 5.439     | 4.815     | 208.5     | 0.8957    |
| 44        | 1.0       | 0.7003    | 0.9451    | 0.03768   | 5.184     | 3.99      | 211.6     | 0.8975    |
| 45        | 0.9778    | 0.8226    | 0.9577    | 0.2415    | 6.463     | 2.533     | 188.8     | 0.9983    |
| 46        | 1.0       | 0.8776    | 0.9415    | 0.1732    | 4.238     | 3.996     | 214.4     | 0.7026    |
| 47        | 0.9778    | 0.6691    | 0.9022    | 0.07971   | 9.285     | 2.707     | 175.9     | 0.6231    |
| 48        | 1.0       | 0.935     | 0.654     | 0.1662    | 3.111     | 3.281     | 207.6     | 0.7669    |
| 49        | 1.0       | 0.7403    | 0.5596    | 0.2543    | 3.042     | 4.814     | 177.6     | 0.6423    |
| 50        | 1.0       | 0.6465    | 0.3554    | 0.2731    | 9.8       | 4.671     | 186.5     | 0.8877    |
| 51        | 1.0       | 0.6372    | 0.4457    | 0.02926   | 4.372     | 1.683     | 163.6     | 0.6546    |
| 52        | 1.0       | 0.9154    | 0.6059    | 0.103     | 4.633     | 3.757     | 160.8     | 0.6865    |
| 53        | 1.0       | 0.6729    | 0.3225    | 0.09446   | 3.255     | 4.445     | 164.0     | 0.6927    |
| 54        | 1.0       | 0.8825    | 0.4946    | 0.2442    | 4.76      | 3.52      | 166.8     | 0.846     |
| 55        | 1.0       | 0.7706    | 0.6172    | 0.09723   | 7.497     | 4.759     | 161.5     | 0.8734    |
| 56        | 0.9778    | 0.9007    | 0.9794    | 0.1145    | 7.445     | 1.072     | 166.4     | 0.8763    |
| 57        | 1.0       | 0.6597    | 0.07878   | 0.1173    | 5.735     | 4.883     | 163.9     | 0.7513    |
| 58        | 0.9778    | 0.8752    | 0.2328    | 0.2981    | 6.409     | 1.486     | 159.3     | 0.9122    |
| 59        | 0.9556    | 0.9913    | 0.6262    | 0.2718    | 5.534     | 1.051     | 179.4     | 0.8793    |
| 60        | 1.0       | 0.7215    | 0.2457    | 0.2604    | 4.507     | 3.413     | 162.9     | 0.6026    |
| 61        | 1.0       | 0.6357    | 0.2676    | 0.2478    | 3.812     | 3.26      | 210.1     | 0.8797    |
| 62        | 1.0       | 0.7373    | 0.4304    | 0.05421   | 4.542     | 3.029     | 176.2     | 0.8026    |
| 63        | 1.0       | 0.756     | 0.9765    | 0.1582    | 4.077     | 1.809     | 213.3     | 0.8881    |
| 64        | 0.9778    | 0.7345    | 0.05702   | 0.1481    | 4.826     | 4.922     | 178.4     | 0.7191    |
| 65        | 1.0       | 0.7057    | 0.3717    | 0.1472    | 6.52      | 3.661     | 162.3     | 0.6368    |
| 66        | 0.9778    | 0.8617    | 0.03752   | 0.276     | 5.089     | 2.37      | 211.4     | 0.9897    |
| 67        | 0.9778    | 0.7538    | 0.5634    | 0.04459   | 4.885     | 3.699     | 164.3     | 0.6232    |
| 68        | 1.0       | 0.7518    | 0.0585    | 0.27      | 5.25      | 3.787     | 162.3     | 0.9822    |
| 69        | 1.0       | 0.7121    | 0.04774   | 0.1332    | 4.928     | 1.929     | 214.1     | 0.8162    |
| 70        | 1.0       | 0.8441    | 0.1984    | 0.179     | 3.798     | 4.281     | 209.1     | 0.8357    |
| 71        | 1.0       | 0.769     | 0.4136    | 0.1216    | 5.717     | 2.438     | 215.6     | 0.6931    |
| 72        | 1.0       | 0.7982    | 0.6535    | 0.2089    | 6.37      | 1.299     | 214.8     | 0.603     |
| 73        | 1.0       | 0.7177    | 0.294     | 0.01173   | 3.979     | 2.542     | 161.9     | 0.942     |
| 74        | 1.0       | 0.7993    | 0.2612    | 0.07582   | 7.25      | 4.61      | 163.4     | 0.6854    |
| 75        | 1.0       | 0.642     | 0.9908    | 0.259     | 3.429     | 4.074     | 211.5     | 0.8397    |
| 76        | 1.0       | 0.7059    | 0.3094    | 0.05693   | 4.596     | 3.941     | 206.9     | 0.8183    |
| 77        | 1.0       | 0.9188    | 0.5543    | 0.2301    | 3.348     | 4.24      | 161.7     | 0.8746    |
| 78        | 1.0       | 0.8007    | 0.8478    | 0.2472    | 7.898     | 4.816     | 179.3     | 0.6723    |
| 79        | 1.0       | 0.7717    | 0.5164    | 0.2429    | 7.351     | 4.285     | 208.2     | 0.8606    |
| 80        | 1.0       | 0.9173    | 0.5327    | 0.2696    | 7.005     | 3.975     | 214.5     | 0.8414    |
| 81        | 1.0       | 0.6504    | 0.233     | 0.2517    | 9.175     | 1.504     | 308.0     | 0.696     |
| 82        | 0.9778    | 0.6429    | 0.5614    | 0.02338   | 3.173     | 2.832     | 177.2     | 0.6999    |
| 83        | 1.0       | 0.6889    | 0.7122    | 0.1945    | 5.686     | 4.572     | 213.3     | 0.8565    |
| 84        | 1.0       | 0.7309    | 0.5154    | 0.06242   | 8.516     | 2.986     | 163.0     | 0.8031    |
| 85        | 1.0       | 0.8729    | 0.5642    | 0.2125    | 6.084     | 3.283     | 175.9     | 0.9564    |
| 86        | 0.9778    | 0.7124    | 0.9049    | 0.06764   | 5.886     | 4.588     | 209.9     | 0.6489    |
| 87        | 1.0       | 0.9621    | 0.1704    | 0.04198   | 6.081     | 4.679     | 207.0     | 0.6726    |
| 88        | 1.0       | 0.8287    | 0.5318    | 0.2001    | 5.707     | 1.963     | 162.2     | 0.6791    |
| 89        | 1.0       | 0.9304    | 0.8104    | 0.2361    | 7.811     | 2.852     | 215.5     | 0.9238    |
| 90        | 1.0       | 0.8669    | 0.01258   | 0.03712   | 5.507     | 4.013     | 214.6     | 0.9231    |
| 91        | 1.0       | 0.9403    | 0.3778    | 0.1754    | 9.839     | 3.251     | 307.8     | 0.735     |
| 92        | 1.0       | 0.7521    | 0.7259    | 0.2179    | 3.017     | 4.875     | 207.0     | 0.9848    |
| 93        | 1.0       | 0.8623    | 0.1947    | 0.1316    | 3.44      | 2.13      | 208.7     | 0.9019    |
| 94        | 0.9778    | 0.9071    | 0.1054    | 0.06397   | 5.326     | 1.762     | 175.6     | 0.9753    |
| 95        | 0.9778    | 0.9467    | 0.5613    | 0.2216    | 4.489     | 4.78      | 212.6     | 0.6865    |
| 96        | 1.0       | 0.7244    | 0.7055    | 0.1797    | 5.635     | 2.904     | 214.1     | 0.8166    |
| 97        | 0.9778    | 0.6281    | 0.8998    | 0.1816    | 5.055     | 3.515     | 208.0     | 0.6529    |
| 98        | 1.0       | 0.7398    | 0.3243    | 0.0821    | 6.867     | 2.214     | 215.6     | 0.6457    |
| 99        | 1.0       | 0.8654    | 0.487     | 0.04604   | 6.327     | 3.579     | 215.7     | 0.9501    |
| 100       | 1.0       | 0.7169    | 0.616     | 0.1275    | 5.271     | 3.005     | 161.5     | 0.8433    |
| 101       | 1.0       | 0.6262    | 0.1864    | 0.2322    | 7.039     | 2.545     | 214.5     | 0.7509    |
| 102       | 1.0       | 0.6589    | 0.1926    | 0.0979    | 3.717     | 3.37      | 206.1     | 0.8339    |
| 103       | 1.0       | 0.7694    | 0.4864    | 0.09027   | 5.192     | 4.26      | 176.0     | 0.8359    |
| 104       | 1.0       | 0.9992    | 0.5378    | 0.07226   | 6.1       | 4.863     | 162.4     | 0.829     |
| 105       | 1.0       | 0.642     | 0.6575    | 0.2711    | 4.103     | 2.223     | 215.3     | 0.716     |
| 106       | 1.0       | 0.6727    | 0.2052    | 0.1761    | 4.764     | 4.822     | 205.9     | 0.8576    |
| 107       | 1.0       | 0.9592    | 0.2408    | 0.1411    | 7.753     | 3.64      | 178.5     | 0.6889    |
| 108       | 0.9778    | 0.6125    | 0.8173    | 0.07333   | 4.486     | 4.865     | 162.4     | 0.7501    |
| 109       | 1.0       | 0.9482    | 0.992     | 0.2013    | 9.062     | 2.307     | 306.9     | 0.6903    |
| 110       | 0.9778    | 0.7761    | 0.4141    | 0.287     | 3.18      | 3.321     | 160.9     | 0.9776    |
=============================================================================================================
Best parameters:
{'colsample_bytree': 0.749816047538945, 'gamma': 0.9507143064099162, 'learning_rate': 0.22227824312530747, 'max_depth': 7.190609389379256, 'min_child_weight': 1.624074561769746, 'n_estimators': 162.39780813448107, 'subsample': 0.6232334448672797}
time: 47.01222467422485
---------------------最优模型----------------------------
最优参数 accuracy: 1.0
精确率: 1.0
召回率: 1.0
F1分数: 1.0
AUC: 1.0
MCC: 1.0
混淆矩阵:
 [[15  0  0]
 [ 0 18  0]
 [ 0  0 12]]
 

分析

贝叶斯优化通过构建代理模型和获取函数,智能地探索参数空间,从而高效地找到全局最优解。在本次优化中,贝叶斯优化在110次迭代后找到了最优参数组合,使得XGBoost模型在测试集上达到了100%的准确率,所有样本均被正确分类。与默认参数相比,优化后的模型性能显著提升,比如准确率从93.33%提升到100%。这表明贝叶斯优化在参数寻优方面具有显著优势,尤其适用于需要精细调参的场景。此外,贝叶斯优化适用于各种评估成本较高的任务,能够有效提升模型的泛化能力。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值