基于神经网络为无人机开发模型预测控制 (MPC) 方案(Matlab代码实现)

     目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码

💥1 概述

基于神经网络为无人机开发模型预测控制(MPC)方案是一个结合了先进控制技术和人工智能算法的复杂过程。以下是一个详细的开发方案概述:

一、方案背景与目标

背景:无人机(UAV)在航拍、货物配送、搜索救援等领域的应用日益广泛,对其自主导航和轨迹跟踪能力提出了更高要求。模型预测控制(MPC)作为一种基于模型的控制技术,通过预测未来状态并优化控制输入来实现对复杂系统的控制,非常适合用于无人机的控制系统中。

目标:结合神经网络的强大学习能力,开发一种基于神经网络的MPC控制方案,以提高无人机在复杂环境中的自主飞行能力和轨迹跟踪精度。

二、方案框架

1. 无人机模型建立
  • 动力学模型:首先,需要建立一个准确的无人机动力学模型,该模型应能够描述无人机的平移和旋转运动。这通常包括无人机的质量、惯性矩、推力、升力等参数。
  • 神经网络模型:利用神经网络(如深度学习中的卷积神经网络CNN、循环神经网络RNN等)对无人机动力学模型进行建模。神经网络的输入可以是无人机的当前状态(如位置、速度、姿态等),输出则是预测的未来状态。
2. MPC控制器设计
  • 预测模型:将训练好的神经网络模型作为MPC的预测模型。该模型能够根据当前状态和控制输入预测未来一段时间内的系统状态。
  • 成本函数:定义一个成本函数,用于衡量预测状态与期望状态之间的偏差。成本函数应考虑到无人机的各种约束条件,如最大速度、最大俯仰角等。
  • 优化求解:在给定的预测范围内,使用优化算法(如二次规划、线性规划等)找到控制输入序列,以最小化成本函数。优化求解过程应考虑到无人机的实时性和计算资源限制。
3. 实时控制与反馈
  • 控制输入实施:将优化后的第一个控制输入应用到无人机中,实现实时控制。
  • 状态估计与反馈:使用传感器数据(如GPS、陀螺仪、加速度计等)实时估计无人机的当前状态,并将状态信息反馈给MPC控制器,以便进行下一轮预测和优化。

三、关键技术与挑战

  • 神经网络训练:需要收集大量的无人机飞行数据来训练神经网络模型,以确保模型的准确性和泛化能力。
  • 计算复杂度:MPC控制器需要在每个控制周期内进行多次预测和优化计算,这对无人机的计算资源提出了较高要求。因此,需要优化算法以提高计算效率。
  • 实时性与鲁棒性:无人机在飞行过程中可能面临各种干扰和不确定性因素(如风速变化、传感器噪声等),MPC控制器需要具备良好的实时性和鲁棒性以确保无人机的安全飞行。

四、应用场景与前景

基于神经网络的MPC控制方案可以广泛应用于各种无人机应用场景中,如自主避障、精确导航、编队飞行等。随着人工智能和无人机技术的不断发展,该方案有望在未来实现更加智能化、自主化的无人机控制系统。

总之,基于神经网络的MPC控制方案为无人机控制领域带来了新的思路和方法。通过结合神经网络的学习能力和MPC的控制精度,可以进一步提高无人机的自主飞行能力和轨迹跟踪精度,为无人机的广泛应用提供有力支持。

📚2 运行结果

主函数部分代码:

% Model Predictive Controller using Linear Adaptive Prediction model
% MATLAB main script
%
​
%% Clear Workspace & Command Window
close all %
 Optionalclc
clear 
format long
​
%% Fix MATLAB Path
path = pwd();
addpath(genpath(path));
​
%
% Load constant data 
for
 the modelsetSimulationSettings()
​
%% Create quadcopter struct (quad) & Load basic fields
quadStructBasics()
​
%
% Define MPC Parameters 
for
 Altitude & x-y ControllerssetMPCSettings()
​
%% Define options for Optimizer
​
%
 Use 
'sqp'
 solver (Sequential Quadratic Programming)options = optimoptions('fmincon','Display','None','Algorithm','sqp');
​
%% Define initial conditions for ftPrev,xPrev,yPrev,DftPrev,DuxPrev,DuyPrev
​
ftPrev = 0;                   %
 Previous Total Thrust DftPrev = zeros(1,mpcParamsAlt.Nc);
​
uxPrev = 0;                   % Previous ux
uyPrev = 0;                   % Previous uy
​
DuxyPrev = zeros(mpcParamsXY.Nc,2);
​
initConditions = zeros(1,12); % Initial conditions for system states [phi theta psi p q r u v w x y z] 
​
% Save initial conditions in struct
simOut.states = initConditions;
​
%% Initialize system states
​
%
 --- Earth Frame --- %%---------------------%
​
% Linear Positions 
x = [];
y = [];
z = [];
​
% Angular Positions 
phi   =  [];
theta =  [];
psi   =  [];
​
​
% ---- Body Frame --- %
%---------------------%
​
% Linear Velocities 
u = [];
v = [];
w = [];
​
% Angular Velocities 
p = [];
q = [];
r = [];
​
%-------------------------------------------%
​
% Initialize Objective Functions Evaluations
Jz = [];
Jxy = [];
​
% Initialize reference angles
phi_ref   = [];
theta_ref = [];
psi_ref = [];
​
%% PID Settings
setPIDSettings()
​
%
% Main Loop​
fprintf("\nSimulation started\n")
​
% Yaw Reference Vector
psi_ref = zeros(length(1:(duration/Ts)+1),1);
​
for k = 1:(duration/Ts)+1
​
    %% Generate reference sub-vector for current time step
​
    %
 Altitude z    refVectorAlt = getReferenceSignal(Ts,(k+1:k+mpcParamsAlt.Np),'Signal','ramp_z');
​
    % x
    refVectorX = getReferenceSignal(Ts,(k+1:k+mpcParamsXY.Np),'Signal','cos_x');
    % y
    refVectorY = getReferenceSignal(Ts,(k+1:k+mpcParamsXY.Np),'Signal','sin_y');
​
    % x'
    refVectorXDot= getReferenceSignal(Ts,(k+1:k+mpcParamsXY.Np),'
Signal
','
cos_xDot
');
    % y'
    refVectorYDot = getReferenceSignal(Ts,(k+1:k+mpcParamsXY.Np),'Signal','sin_yDot');
​
    %% Print current step k 
    progress = k/((duration/Ts)+1)*100;
    fprintf("\nSimulation Time Step %
d - 
Progress:
 %.
1
f
%%", k, progress)
​
    z = [z; simOut.states(end,end)];
    
    %
 Update x,y    x = [x; simOut.states(end,end-2)];
    y = [y; simOut.states(end,end-1)];
    
    % Update phi,theta,psi
    phi = [phi; simOut.states(end,1)]; 
    theta = [theta; simOut.states(end,2)];
    psi = [psi; simOut.states(end,3)];

🎉3 参考文献

[1]史宝岱,徐艳召,崔俊杰,等.基于卷积神经网络的无人机图像自动识别算法[J].信息工程大学学报,2023,24(05):526-532.

[2]谢睿.基于改进MPC的自动驾驶车辆轨迹跟踪控制研究[D].山东交通学院,2024.DOI:10.27864/d.cnki.gsjtd.2024.000181.

部分理论引用网络文献,若有侵权联系博主删除

  • 17
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一段基于 RBF 神经网络的多四旋翼无人机的协同控制的 Matlab 仿真代码,其中采用了协同控制算法,实现了多无人机之间的协同控制: ```matlab % 定义多无人机系统 num_drones = 4; % 无人机数量 x = zeros(num_drones, 3); % 位置 v = zeros(num_drones, 3); % 速度 q = zeros(num_drones, 4); % 姿态四元数 w = zeros(num_drones, 3); % 角速度 u = zeros(num_drones, 4); % 控制量 f = zeros(num_drones, 1); % 推力 tau = zeros(num_drones, 3); % 总力矩 % 定义 RBF 神经网络模型 input_dim = 6; % 输入维度 hidden_dim = 20; % 隐层神经元数量 output_dim = 4; % 输出维度 rbf = newrb(x', u', 0.1, 2); % 训练 RBF 神经网络 % 定义控制器参数 Kp = 1; % 比例系数 Ki = 0.1; % 积分系数 Kd = 0.01; % 微分系数 % 设置仿真参数 dt = 0.01; % 时间步长 t = 0:dt:10; % 时间向量 % 循环仿真 for i = 1:length(t) % 计算控制器输出 for j = 1:num_drones % 计算目标位置和速度 target_x = [10 + j; 10 + j; 10 + j]; % 目标位置 target_v = [0; 0; 0]; % 目标速度 % 计算控制误差 e = target_x' - x(j, :); % 位置误差 e_sum = sum(e); % 位置误差累加 e_diff = target_v' - v(j, :); % 速度误差 % 计算控制量 input = [x(j, :)'; v(j, :)']; % 输入为位置和速度 output = sim(rbf, input); % 输出为控制量 u(j, :) = output; f(j) = k * sum(u(j, 1:4)); % 推力 tau(j, :) = [L * k * (u(j, 2) - u(j, 4)), L * k * (u(j, 3) - u(j, 1)), b * (u(j, 1) - u(j, 2) + u(j, 3) - u(j, 4))]; % 总力矩 % 计算加速度和角加速度 a = [0; 0; -g] + 1 / m * quatrotate(q(j, :), [0; 0; f(j)]')'; alpha = 1 / [Ix; Iy; Iz] .* (tau(j, :) - cross(w(j, :), [Ix; Iy; Iz] .* w(j, :))); % 更新状态 w(j, :) = w(j, :) + alpha * dt; q(j, :) = quatnormalize(q(j, :) + 0.5 * quatmultiply(q(j, :), [0 w(j, :)] * dt)); v(j, :) = v(j, :) + a * dt; x(j, :) = x(j, :) + v(j, :) * dt; end % 计算协同控制量 for j = 1:num_drones % 计算邻居无人机的位置和速度 neighbor_x = x; neighbor_x(j, :) = []; neighbor_v = v; neighbor_v(j, :) = []; % 计算邻居无人机位置和速度的平均值 avg_x = mean(neighbor_x); avg_v = mean(neighbor_v); % 计算协同控制误差 e_coll = x(j, :) - avg_x; e_vel = v(j, :) - avg_v; % 计算协同控制量 u_coll = -Kp * e_coll - Ki * sum(e_coll) - Kd * e_vel; u(j, 1) = u(j, 1) + u_coll(3); u(j, 2) = u(j, 2) + u_coll(1); u(j, 3) = u(j, 3) + u_coll(2); u(j, 4) = u(j, 4) - u_coll(3); end % 更新 RBF 神经网络 rbf = newrb(x', u', 0.1, 2); % 绘制无人机轨迹 plot3(x(:, 1), x(:, 2), x(:, 3), 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); hold on; plot3([10, 10], [10, 10], [10, 10 + num_drones], 'r--'); hold off; axis equal; xlabel('x'); ylabel('y'); zlabel('z'); title('多四旋翼无人机轨迹'); drawnow; end ``` 该代码中,通过定义多无人机系统的动力学模型和控制器参数,实现了基于 RBF 神经网络的协同控制。在循环仿真中,通过计算控制器输出和无人机状态变化,更新无人机状态并绘制无人机的轨迹。需要注意的是,该代码仅为简单的示例代码,还需要根据实际应用场景进行进一步优化和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值