💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:以风-水电联合运行后的风电场效益最大为目标,利用粒子群优化算法来进行风-水电联合优化运行的仿真分析。仿真结果表明风-水电联合供电不但提高了风电场的收益,同时也平滑了风电场的功率输出,这将有利于提高风电在电力系统中的份额。促进我国风电产业的发展。
为提高风电场的供电质量同时增加其发电效益,利用储能技术为风电场配置一个蓄能系统是比较重要的解决措施之一。风电的蓄能技术有水力蓄能、压缩空气蓄能、超导磁力蓄能、流体电池组、电解水制氢等,其中水力蓄能是技术较成熟的一种蓄能方式,且小型的水力发电系统投资也不大,因此为采用风-水电联合供电模式不失为一种优选的方案"。
本文提出的基于遗传算法的风-水电联合优化运行就是采用水力蓄能的方式,为风电场配置一个水力发电系统,当可利用风能数值较大时,将一部分风能通过水泵以水能的形式储存于水库中,然后在可利用风能数值较小或上网电价较高时再经过水电发电机组将存储的能量输送到电网中去,以此实现风电场功率的优化输出,这样一方面平滑了风电场的输出波动,另一方面也充分利用了风能,增加了风电场的效益。数学模型见第4部分。
📚2 运行结果
部分代码:
%% 优化
F=fun(P_w,P_h,P_p,sizepop,NVAR,C,C_p); %计算目标函数(适应度值)
E=zeros(sizepop,NVAR+1);
%---------对不符合条件的解(粒子)加上惩罚因子----------------------------%
%判断哪些解需要加入惩罚因子
P=P_h+P_w;
M=1000; %惩罚因子
for j=1:sizepop
% 约束条件(2)
for nvar=1:NVAR
if P(j,nvar)>P_max %flag=1时表示不满足约束条件
F(j)=F(j)-M; %加上惩罚因子
end
if P(j,nvar)<P_min %flag=1时表示不满足约束条件
F(j)=F(j)-M; %加上惩罚因子
end
% 约束条件(3)
if P_p(j,nvar)+P_w(j,nvar)>P_gmax
F(j)=F(j)-M;
end
if P_p(j,nvar)+P_w(j,nvar)<P_gmin
F(j)=F(j)-M;
end
% 约束条件(4)
if P_h(j,nvar)>min(P_hmax,E(j,nvar)*eta_h/t)
F(j)=F(j)-M;
end
E(j,nvar+1)=E(j,nvar)+t*(eta_p*P_p(j,nvar)-P_h(j,nvar)/eta_h); %下一时刻水库储能
%E(j,nvar+1)=max(0,E(j,nvar+1)); %若E小于0,应加以约束
if P_h(j,nvar)<P_hmin
F(j)=F(j)-M;
end
% 约束条件(6)
if E(j,nvar)<0
F(j)=F(j)-M;
end
if E(j,nvar)>E_max
F(j)=F(j)-M;
end
% 约束条件(5)
if P_p(j,nvar)>P_pmax
F(j)=F(j)-M;
end
if P_p(j,nvar)<P_pmin
F(j)=F(j)-M;
end
% 约束条件(7)
if P_v(nvar)-P_w(j,nvar)-P_p(j,nvar)<0
F(j)=F(j)-M;
end
%附加约束条件(1)
%{
if P_h(j,nvar)*P_p(j,nvar)~=0
F(j)=F(j)-M*(P_h(j,nvar)*P_p(j,nvar));
end
%}
end
end
% 个体极值和群体极值(初始情况)
[bestfitness,I]=max(F); %找出最大的惩罚函数:bestfitness为惩罚函数值;I为序号数
zbest=Vary(I,:); %全局最佳
gbest=Vary; %个体最佳
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]潘文霞,范永威,杨威.风-水电联合优化运行分析[J].太阳能学报,2008(01):80-84.