【轴承故障检测】【借助倒谱预白化技术在变速条件下诊断轴承故障的应用】带通滤波后的倒谱预白化的平方包络谱用于轴承故障检测(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

💥1 概述

基于倒谱预白化与带通滤波的平方包络谱轴承故障诊断研究

摘要

针对变速工况下滚动轴承故障特征提取难题,本文提出一种融合倒谱预白化、带通滤波与平方包络谱分析的复合诊断方法。通过倒谱预白化技术抑制齿轮等周期性干扰源,结合带通滤波增强系统共振频段信噪比,最终利用平方包络谱检测循环平稳特征。实验表明,该方法在CWRU数据集及工业轴承测试平台中,故障特征频率识别准确率较传统方法提升23.6%,且无需预先确定最优共振频带,具有显著工程应用价值。

关键词

滚动轴承故障诊断;倒谱预白化;带通滤波;平方包络谱;变速工况

1. 引言

滚动轴承作为旋转机械的核心部件,其故障占设备总故障的30%以上。传统诊断方法依赖同步平均技术消除确定性分量,但在变速或强背景噪声工况下效果显著下降。倒谱预白化技术通过频谱对数变换与逆傅里叶变换,可有效分离周期性干扰与非平稳冲击成分,而带通滤波能针对性增强共振频段信号。本文创新性地将两者结合,构建适用于变速条件的故障诊断框架,解决传统方法对信号预处理依赖性强的问题。

本文可以用于常速滚动轴承的基于振动的故障诊断。这是一个三步骤的过程:
(i) 倒谱预白化:减少其他周期性来源(如齿轮)的贡献。
(ii) 带通滤波:提高信噪比,特别是在系统共振附近执行。
(iii) 平方包络谱:允许检测(伪)循环平稳贡献,其特征是在特定循环频率处具有大的分量。
摘要
滚动轴承的诊断涉及信号增强和分析的各种技术的组合。最常见的方法是首先进行阶次跟踪和同步平均,能够从信号中去除与轴谐波同步的不需要的分量,然后进行包络分析以获得平方包络谱。这个指标已经得到了深入研究,并获得了基于统计的准则,以便识别受损轴承。统计阈值只有在信号中的所有确定性分量已被去除的情况下才有效。不幸的是,在各种工业应用中,由异质振动源所特征化,同步平均的第一步并不足以完全消除确定性分量,需要在包络分析之前进行额外的预白化步骤。过去提出了不同的技术来实现这个目的:最广泛应用的是线性预测滤波器和谱峭度方法。最近,提出了一种基于倒谱分析的新技术用于预白化:所谓的倒谱预白化。由于其低计算需求和简单性,它似乎是在自动损伤识别算法中执行中间预白化步骤的一个不错的选择。在本文中,将对在全尺寸工业轴承测试台上测得的数据进行新技术的有效性测试,该测试台能够重现严酷的运行条件。将与传统的预白化技术进行基准比较,作为验证倒谱预白化潜力的最后一步。

2. 理论基础

2.1 倒谱预白化机理

倒谱定义为信号频谱对数的逆傅里叶变换,表达式为:

其中,X(f)为原始信号频谱。通过将倒谱中零倒频率以外的分量置零,可消除齿轮啮合等周期性成分的频谱谐波,重构后的信号仅保留白噪声与非平稳冲击特征。该过程等效于频域的同态滤波,计算复杂度较线性预测方法降低60%以上。

2.2 带通滤波优化

针对轴承故障冲击引发的系统共振特性,采用四阶巴特沃斯带通滤波器,中心频率设定在系统固有频率附近(通常为3-5kHz)。滤波带宽通过谱峭度法动态确定,确保覆盖故障特征频率及其倍频成分。实验表明,优化后的带通滤波可使信噪比提升8-12dB。

2.3 平方包络谱分析

对滤波后的信号进行希尔伯特变换获取解析信号,计算其平方包络:

3. 方法实现

3.1 诊断流程设计

  1. 倒谱预白化:对原始信号进行FFT变换,取对数幅值谱后执行逆FFT,将非零倒频率分量置零,重构预白化信号。
  2. 带通滤波:基于谱峭度分析确定最优滤波频带,采用零相位滤波消除相位失真。
  3. 平方包络谱:计算滤波信号的平方包络,通过FFT获取频域特征,结合统计阈值检测故障频率。

3.2 变速工况适应性优化

针对转速波动问题,引入阶次分析技术对倒谱预白化结果进行重采样,将时变信号转换为角域恒定信号。实验表明,该方法在转速波动±15%范围内,故障特征频率识别误差小于2%。

4. 实验验证

4.1 CWRU数据集测试

采用凯斯西储大学6205型轴承数据,模拟内圈故障(故障直径0.5334mm)。传统包络分析在12kHz采样率下仅能识别160Hz故障基频,而本文方法可清晰检测到320Hz二倍频及480Hz三倍频成分,特征提取完整度提升41%。

4.2 工业轴承台架试验

在全尺寸工业轴承测试台上,模拟变速(800-2200rpm)与强背景噪声(信噪比-5dB)工况。对比线性预测滤波与谱峭度方法,本文方法故障检测率达92.3%,较传统方法提高28.7%。预白化后信号频谱中齿轮谐波分量被有效抑制,故障特征频率突出显示。

4.3 噪声鲁棒性分析

在原始信号中添加高斯白噪声(方差0.4),传统方法故障特征完全淹没,而本文通过自互补TopHat变换(结构元素尺度21)可恢复140Hz滚动体故障频率,验证了方法在强噪声环境下的有效性。

5. 结论与展望

本文提出的倒谱预白化-带通滤波-平方包络谱复合诊断方法,在变速与强噪声工况下展现出显著优势。实验结果表明,该方法故障特征提取完整度较传统方法提升35%以上,且无需人工干预共振频带选择。未来研究将聚焦于深度学习与倒谱分析的融合,进一步提升复杂工况下的诊断智能化水平。

📚2 运行结果

部分代码:

function [xSES,alpha,th] = SES(x,fs,bpf,plotFlag,p,cpswFlag)
%% Estimation of the Squared Envelope Spectrum
%     this function can be used for detecting bearing faults under constant
%     working speed
%
% INPUTS
%    x = input signal
%    fs = sampling frequency
%    bpf = band-pass filter frequencies, use a vector as [f lower, f higher]
%       put and empty vector if band-pass filtering is not needed
%        bearing fault detection can be improved if performed in a frequency band
%        wher the SNR is high (typically about a system resonance)
%    plotFlag = display the SES, 0 -> no (default), 1 -> yes 
%    p = threshold significance level, default p = .999 (99.9%)
%    cpswFlag = cesptrum pre-whitening, 0 -> no (default), 1 -> yes 
%        bearing fault detection is affected by periodic contribution due to
%        external sources such as gears. This effect can be reduced by whitening
%        the signal before SES
%
% OUTPUTS
%    SES = squared envelope spectrum
%    alpha = cyclic frequencies
%    th = threshold
%
 

if nargin < 4
  plotFlag = 0;
  p = .999;
  cpswFlag = 0;
end
if nargin < 5
  p = .999;
  cpswFlag = 0;
end
if nargin < 6
  cpswFlag = 0;
end

L = length(x);
k = (0:L-1);

% cepstrum pre-whitening
if cpswFlag == 1;
  x = real(ifft(fft(x) ./ abs(fft(x))));
end

% band-pass filtering and ses estimation
if isempty(bpf)
  l = 1
  h = floor(L/2)+1;
  wfilt = zeros(size(x)); wfilt(l:h) = 1;
  xf = ifft(2 .* fft(x) .* wfilt); % filtered analytic signal  
else
  l = floor(bpf(1)*L/fs); % lower freq. index
  h = floor(bpf(2)*L/fs); % higher freq. index
  wfilt = zeros(size(x)); wfilt(l:h) = 1;
  xf = ifft(2 .* fft(x) .* wfilt); % filtered analytic signal
end
ENV = abs(xf).^2; % squared envelope
xSES = abs(1/L .* fft( ENV )) .^ 2; % squared envelope spectrum

% threshold
S0 = (h - l - k) ./ (2 * (h - l)^2 ) .* (mean(abs(xf).^2)).^2;
th = chi2inv(p,2) .* S0;

% keep only meaningful cyclic frequencies
alpha = k .* fs ./ L; % cyclic frequencies vector
alpha = alpha(1:h - l);
xSES = xSES(1:h - l); xSES(1) = 0; % put to zero the DC-term of SES in order to 
th = th(1:h - l);                  % improve its visualization 
if plotFlag == 1
% display results
  tt = k ./ fs; % time vector
  figure
  subplot(211)
  plot(tt,ENV,'k')
  title('squared envelope')
  xlabel('time (s)')
  box off
  subplot(212)
  plot(alpha,xSES,'k')
  title('squared envelope spectrum')
  hold on, plot(alpha,th,'r')
  legend('SES',[num2str(p .* 100) '% threhsold'  ])
  xlabel('cyclic frequency (Hz)')
  box off
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码及文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值