最近在看数学分析原理Rudin。里面有一道习题,问复数为何不能比较大小?,长久以来我也一直在寻找这个答案,目前终于有了一个自认为比较完美的答案,特分享出来:
对数的大小比较,我们通常求其差,然后根据结果与零的比较来判断原始两数的大小,对复数我们不妨也这样考虑,设有两个复数z1,z2,要比较其大小,做差:
z1 -z 2,
当然其结果一定为一复数,实际上转化为任给一复数,我们比较其与零的大小,设该数为
a + b i
在这里b 一定不为零(零代表是实数,不用考虑),所以假设
a + bi > 0 且 b > 0
则 i> - a /b,
考虑最简单的情况,另a=0; 可以看到:
i > 0
两边同时乘上i, 考虑到i > 0, 则
i*i > 0
因为i*i = -1;
所以有:
-1 〉0
等式不成立,同理可证a + bi < 0 且 b > 0,也不成立,
故复数不能比较大小!