复数为何不能比较大小?

最近在看数学分析原理Rudin。里面有一道习题,问复数为何不能比较大小?,长久以来我也一直在寻找这个答案,目前终于有了一个自认为比较完美的答案,特分享出来:

 

对数的大小比较,我们通常求其差,然后根据结果与零的比较来判断原始两数的大小,对复数我们不妨也这样考虑,设有两个复数z1,z2,要比较其大小,做差:

 

z1 -z 2,

 

当然其结果一定为一复数,实际上转化为任给一复数,我们比较其与零的大小,设该数为

 

a + b i

 

在这里b 一定不为零(零代表是实数,不用考虑),所以假设

 

a + bi > 0  且 b > 0

 

则 i> - a /b,

 

考虑最简单的情况,另a=0; 可以看到:

 

i > 0

 

两边同时乘上i, 考虑到i > 0, 则

 

i*i > 0

 

因为i*i = -1;

 

所以有:

 

-1 〉0

 

等式不成立,同理可证a + bi < 0  且 b > 0,也不成立,

 

故复数不能比较大小!

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值