数学物理方法 05 留数定理

 

§5.1 

5.1.1 

1. 
bf(z),f(z)= k=  C k (zb) k ,(0<|zb|<R),1zb C 1 f(z)b. 
res f(b)=C 1 res [f(z),b]=C 1  
:f(z)=11z ,res f(z)=1 

2. 
f(z)σb k (k=1,2,,n),σ ¯ =σ+l, l f(z)dz=2πi k=1 n res f(b k ) 
:res f(b k )=C 1 =12πi  l k  f(z)dz 
1: |z|=1 e 1z  dz=2πi 

5.1.2 

1. 
res f()=12πi  l f(z)dz 
,l. 

2.res f()=C 1 ,R<|z|< 
2:res(1+z 2 e z  ,)=0 

3.0: 
 k=1 n res f(b k )+res f()=0 

: 
(1)res f(b k )=C 1 ,0<|zb k |<R k  
res f()=C 1 ,R<|z|< 
(2)b,res f(b k )=0 
(3)使z=,res f()0 

5.1.3 

1. 
res f(b k )=⎧ ⎩ ⎨ C 1 ,0<|zb k |<R k 12πi  l k  f(z)dz  
res f()=⎧ ⎩ ⎨ C 1 ,|z|>R12πi f(z)dz  
3:res [5z2z(z1) ,0]=2 

2. 
bf(z)n, 
res f(b)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ 1(n1)! d n1 dz n1  [(zb) n f(z)] z=b lim zb [(zb)f(z)],n=1  

4.res[1(z 2 +1) 2  ,i]=i4  
:b,f(z)=φ(z)ψ(z) ,φ(z)ψ(z)H(σ);φ(b)0,ψ(b)=0,ψ  (b)0,res f(b)=φ(b)ψ  (b)  
5.res[1z 4 1 ,i]=i4  
:1,i,1,i() 
6. |z|=3π2  1sinz dz=2πi 
:z=nπ,n=0,±1,() 

7: |z|=1 e 1z  dz=2πi 
8: |z|=2 1(z3)(z 5 1) dz=πi121  
:z k =e i2nπ5  ,n=0,1,2,3,4;k=1,2,3,4,5,() 
z 6 =3(|z|<2) 

§5.2 

: b a f(x)dx l f(z)dz, 
 b a f(x)dx+ l 1  f(z)dz= l f(z)dz=2πi k=1 n res f(b k ) 
: 
(1)f(x) 
(2)f(z)l 1  
(3) l 1  f(z)dz 

5.2.1   f(x)dx 

f(z),Imz>0b k (k=1,2,,n),|z||zf(z)|0,   f(x)dx=2πi k=1 n res f(b k )| Imz>0  
1.I=   11+x 2  dx=π 

5.2.2  0 f(x)cos(px)dx,  0 f(x)sin(px)dx 

f(z),Imz>0b k (k=1,2,,n),|z||f(z)|0,p>0 
  0 f(x)cospxdx=πi k=1 n res[f(b k )e ipb k  ] Imz>0 ,f(x); 
  0 f(x)sinpxdx=π k=1 n res[f(b k )e ipb k  ] Imz>0 ,f(x). 
: 
1)|z||f(z)|0,|z||zf(z)|0; 
2)p>0; 
3)f(x); 

:F(z)=f(z)e ipz 沿l 
 R R f(x)e ipx dx+ C R  f(z)e ipz dz=2πi k=1 n res[f(z)e ipz ] l  

: 
|z|f(z)0, C R  f(z)e ipz dz |z| 0,p>0 

2.  0 xsinβx(x 2 +b 2 ) 2  dx,β>0,b>0 
:f(z)=z(z 2 +b 2 ) 2  ,z=±ib 
  0 xsinβx(x 2 +b 2 ) 2  dx=πres[ze iβz (z 2 +b 2 ) 2  ,ib] 
=πddz [(zib) 2 ze iβz (z 2 +b 2 ) 2  ] ib  
=πβe bβ 4b  

5.2.3 2π 0 R(cosθ,sinθ)dθ 

z=e iθ ,cosθ=z+z 1 2 ,sinθ=zz 1 2i ,dθ=dziz  
 2π 0 R(cosθ,sinθ)dθ= |z|=1 R(z+z 1 2 ,zz 1 2i )dziz  
 2π 0 R(cosθ,sinθ)dθ=2πi k=1 n resf(b k )| |z|<1  

3.I= 2π 0 dθ5+2cosθ  
:I= 2π 0 dθ5+2cosθ  
=i |z|=1 1z 2 +5z+1 dz 
=i2πiresf(5+21 − −   2 ) 
=2π12z+5 | z=5+21 − −   2   
=2π21 − −     

§5.3 

5.3.1Dirichlel  0 sinxx dx 

:e iz z 沿. 
 R ε e ix x dx+ C R  e iz z dz+ ε R e ix x dx+ C ε  e iz z dz=0(1) 

:f(z)C r :za=re iθ ,θ 1 θθ 2 lim r0 (za)f(z)=λ,lim r0  C r  f(z)dz=i(θ 2 θ 1 )λ=i(θ 2 θ 1 )resf(a)(a) 

:  0 sinxx dx=π2  

  0 sinaxx dx=⎧ ⎩ ⎨ ⎪ ⎪ π2 ,a>0π2 ,a<0  

  0 sin 3 xx dx=34 π 

5.3.2Fresnel  0 sinx 2 dx/  0 cosx 2 dx 

:F(z)=e iz 2  沿π4 l. 
 l e iz 2  dz= R 0 e ix 2  dx+ C  R  e iz 2  dz+ 0 R e i(xe iπ4  ) 2  d(xe iπ4  )=0(2) 

:  0 cosx 2 dx=  0 sinx 2 dx=2π − −   4  

5.3.3  0 e ax 2  cosbxdx 

  0 e ax 2  cosbxdx(a>0,b) 
=12 e b 2 4a     e a(x+ib2a ) 2  dx 
=12 e b 2 4a   l  1  e az 2  dz 
 l e az 2  dz= l 1  e az 2  dz+ 0 b2a  e a(R+iy) 2  d(iy)+ R R e ax 2  dx+ b2a  0 e a(R+iy) 2  d(iy)=0 
:  0 e ax 2  cosbxdx=12 e b 2 4a  πa  − −   (a>0) 

§5.4 

5.4.1  0 x α1 1+x dx,(0<α<1) 

f(z)=z α1 1+z ,z α1 =1z 1α  ,0<α<1 
f(z):0,;:z=1 
0沿线, 
 l f(z)dz=2πires[f(z),1] 
 R ε x α1 1+x dx+ C R  z α1 1+z dz+ ε R (xe i2π ) α1 1+xe i2π  d(xe i2π )+ C ε  z α1 1+z dz=2πires[z α1 1+z ,1](1) 
:  0 x α1 1+x dx=πsinπα  

5.4.2  0 lnx(1+x 2 ) 2  dx 

f(z)=lnz(1+z 2 ) 2  , 
f(z):0,;:z=±i 
0沿线, 
 l f(z)dz2πires[f(z),i] 
 R ε lnx(1+x 2 ) 2  dx+ C R  lnz(1+z 2 ) 2  dz+ ε R lnx(1+x 2 ) 2  dx+ C ε  lnz(1+z 2 ) 2  dz=2πires[lnz(1+z 2 ) 2  ,i](2) 
:  0 lnx(1+x 2 ) 2  dx=π4 ,  0 1(1+x 2 ) 2  dx=π4  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值