NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题

目录

4.3自动梯度计算

4.3.1 利用预定义算子重新实现前馈神经网络

 4.3.2完善Runner类

4.3.3模型训练

4.3.4性能评价

 4.3.5思考题

4.4优化问题

4.4.1参数初始化

4.4.2梯度消失问题

模型构建

使用Sigmoid型函数进行训练

使用ReLU函数进行模型训练

4.4.3死亡Relu问题

使用ReLU进行模型训练

使用Leaky ReLU进行模型训练


4.3自动梯度计算

虽然我们能够通过模块化的方式比较好地对神经网络进行组装,但是每个模块的梯度计算过程仍然十分繁琐且容易出错。在深度学习框架中,已经封装了自动梯度计算的功能,我们只需要聚焦模型架构,不再需要耗费精力进行计算梯度。

飞桨提供了paddle.nn.Layer类,来方便快速的实现自己的层和模型。模型和层都可以基于paddle.nn.Layer扩充实现,模型只是一种特殊的层。继承了paddle.nn.Layer类的算子中,可以在内部直接调用其它继承paddle.nn.Layer类的算子,飞桨框架会自动识别算子中内嵌的paddle.nn.Layer类算子,并自动计算它们的梯度,并在优化时更新它们的参数。

pytorch中的相应内容是什么?请简要介绍。
pytorch里面一切自定义操作基本上都是继承nn.Module类来实现的

4.3.1 利用预定义算子重新实现前馈神经网络

使用torch的预定义算子来重新实现二分类任务。
主要使用到的预定义算子为torch.nn.Linear

参数:    

in_features: size of each input sample,每个输入样本的大小,输入x的列数,输入数据[batchsize, in_features]

out_features: size of each output sample ,每个输出样本的大小,线性变换后输出y的列数,输出数据大小是: [batchsize, out_features]

bias: If set to ``False``,则图层不会学习附件偏差.  默认值: ``True``,默认有偏置

class Model_MLP_L2_V2(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Model_MLP_L2_V2, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
 
        self.fc2 = nn.Linear(hidden_size, output_size)
        # 使用'torch.nn.functional.sigmoid'定义 Logistic 激活函数
        self.act_fn = F.sigmoid
 
    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs)
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        return a2

增加一个3个神经元的隐藏层,再次实现二分类,并与1做对比 

class Model_MLP_L2_V3(torch.nn.Module):
    def __init__(self, input_size, hidden_size, hidden_size2, output_size):
        super(Model_MLP_L2_V3, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        w1=torch.normal(0,0.1,size=(hidden_size,input_size),requires_grad=True)
        self.fc1.weight = nn.Parameter(w1)
 
        self.fc2 = nn.Linear(hidden_size, hidden_size2)
        w2 = torch.normal(0, 0.1, size=(hidden_size2, hidden_size), requires_grad=True)
        self.fc2.weight = nn.Parameter(w2)
 
        self.fc3 = nn.Linear(hidden_size2, output_size)
        w3 = torch.normal(0, 0.1, size=(output_size, hidden_size2), requires_grad=True)
        self.fc3.weight = nn.Parameter(w3)
 
        # 使用'torch.nn.functional.sigmoid'定义 Logistic 激活函数
        self.act_fn = torch.sigmoid
 
    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs)
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        z3 = self.fc3(a2)
        a3 = self.act_fn(z3)
        return a3
input_size = 2
hidden_size = 5
hidden_size2 = 3
output_size = 1
model = Model_MLP_L2_V3(input_size=input_size, hidden_size=hidden_size, hidden_size2=hidden_size2, output_size=output_size)

 添加了一个隐藏层hidden_size2 ,含有3个神经元,所以hidden_size2=3

 运行结果

[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.50000
[Train] epoch: 0/1000, loss: 0.6949098110198975
[Train] epoch: 50/1000, loss: 0.6932579278945923
[Train] epoch: 100/1000, loss: 0.6932216882705688
[Train] epoch: 150/1000, loss: 0.6931880712509155
[Train] epoch: 200/1000, loss: 0.6931560039520264
[Train] epoch: 250/1000, loss: 0.6931244730949402
[Train] epoch: 300/1000, loss: 0.6930925846099854
[Train] epoch: 350/1000, loss: 0.6930593848228455
[Train] epoch: 400/1000, loss: 0.6930238604545593
[Train] epoch: 450/1000, loss: 0.6929848790168762
[Train] epoch: 500/1000, loss: 0.6929409503936768
[Train] epoch: 550/1000, loss: 0.692890465259552
[Train] epoch: 600/1000, loss: 0.6928313374519348
[Train] epoch: 650/1000, loss: 0.6927607655525208
[Train] epoch: 700/1000, loss: 0.692674994468689
[Train] epoch: 750/1000, loss: 0.6925693154335022
[Train] epoch: 800/1000, loss: 0.6924368143081665
[Train] epoch: 850/1000, loss: 0.6922679543495178
[Evaluate] best accuracy performence has been updated: 0.50000 --> 0.50625
[Train] epoch: 900/1000, loss: 0.6920491456985474
[Evaluate] best accuracy performence has been updated: 0.50625 --> 0.51250
[Evaluate] best accuracy performence has been updated: 0.51250 --> 0.51875
[Evaluate] best accuracy performence has been updated: 0.51875 --> 0.52500
[Evaluate] best accuracy performence has been updated: 0.52500 --> 0.53125
[Evaluate] best accuracy performence has been updated: 0.53125 --> 0.54375
[Evaluate] best accuracy performence has been updated: 0.54375 --> 0.55000
[Train] epoch: 950/1000, loss: 0.6917603015899658
[Evaluate] best accuracy performence has been updated: 0.55000 --> 0.55625
[Evaluate] best accuracy performence has been updated: 0.55625 --> 0.56250
[Evaluate] best accuracy performence has been updated: 0.56250 --> 0.56875
[Evaluate] best accuracy performence has been updated: 0.56875 --> 0.57500
 
Process finished with exit code 0

 

 4.3.2完善Runner类

基于上个实验中的Runner类,本次实验中的Runner类加入了自动梯度计算;模型保存时,使用state_dict方法获取模型参数;模型加载时,使用set_state_dict方法加载模型参数.

class RunnerV2_2(nn.Module):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        super().__init__()
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
 
        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []
 
        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []
 
    def train(self, train_set, dev_set, **kwargs):
        # 将模型切换为训练模式
        self.model.train()
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        # log打印函数,如果没有传入则默认为"None"
        custom_print_log = kwargs.get("custom_print_log", None)
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)
            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
 
            # 自动计算参数梯度
            trn_loss.backward()
            if custom_print_log is not None:
                # 打印每一层的梯度
                custom_print_log(self)
 
            # 参数更新
            self.optimizer.step()
            # 清空梯度
            self.optimizer.zero_grad()
 
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
 
            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, data_set):
        # 将模型切换为评估模式
        self.model.eval()
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss
 
    # 模型测试阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, X):
        # 将模型切换为评估模式
        self.model.eval()
        return self.model(X)
 
    # 使用'model.state_dict()'获取模型参数,并进行保存
    def save_model(self, saved_path):
        torch.save(self.model.state_dict(), saved_path)
 
    # 使用'model.set_state_dict'加载模型参数
    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.set_state_dict(state_dict)

4.3.3模型训练

实例化Runner类,并传入训练配置,代码实现如下:

# 设置模型
input_size = 2
hidden_size = 5
output_size = 1
model = Model_MLP_L2_V2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
 
# 设置损失函数
loss_fn = F.binary_cross_entropy
# 设置优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.2)
# 设置评价指标
metric = accuracy
# 其他参数
epoch_num = 1000
saved_path = 'best_model.pdparams'
# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2_2(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_path="best_model.pdparams")

其中所附计算准确率函数:

# 准确率 函数
def accuracy(preds, labels):
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # preds的数据类型转换为float32类型
        preds = (preds >= 0.5).to(torch.float32)
    else:
        # 多分类时,使用torch.argmax计算最大元素索引作为类别
        preds = torch.argmax(preds, 1)
        preds = preds.to(torch.int32)
    return torch.mean(torch.as_tensor((preds == labels), dtype=torch.float32))
# 假设模型的预测值为[[0.],[1.],[1.],[0.]],真实类别为[[1.],[1.],[0.],[0.]],计算准确率
preds = torch.tensor([[0.], [1.], [1.], [0.]])
labels = torch.tensor([[1.], [1.], [0.], [0.]])
print("accuracy is:", accuracy(preds, labels))

 运行结果为:

[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.21875
[Train] epoch: 0/1000, loss: 0.7022157311439514
[Evaluate] best accuracy performence has been updated: 0.21875 --> 0.26250
[Evaluate] best accuracy performence has been updated: 0.26250 --> 0.31875
[Evaluate] best accuracy performence has been updated: 0.31875 --> 0.43750
[Evaluate] best accuracy performence has been updated: 0.43750 --> 0.48750
[Evaluate] best accuracy performence has been updated: 0.48750 --> 0.52500
[Evaluate] best accuracy performence has been updated: 0.52500 --> 0.53125
[Evaluate] best accuracy performence has been updated: 0.53125 --> 0.54375
[Evaluate] best accuracy performence has been updated: 0.54375 --> 0.55625
[Evaluate] best accuracy performence has been updated: 0.55625 --> 0.57500
[Evaluate] best accuracy performence has been updated: 0.57500 --> 0.59375
[Evaluate] best accuracy performence has been updated: 0.59375 --> 0.60625
[Evaluate] best accuracy performence has been updated: 0.60625 --> 0.63125
[Evaluate] best accuracy performence has been updated: 0.63125 --> 0.66875
[Evaluate] best accuracy performence has been updated: 0.66875 --> 0.68125
[Evaluate] best accuracy performence has been updated: 0.68125 --> 0.71875
[Evaluate] best accuracy performence has been updated: 0.71875 --> 0.72500
[Evaluate] best accuracy performence has been updated: 0.72500 --> 0.75000
[Evaluate] best accuracy performence has been updated: 0.75000 --> 0.75625
[Evaluate] best accuracy performence has been updated: 0.75625 --> 0.76875
[Evaluate] best accuracy performence has been updated: 0.76875 --> 0.78125
[Evaluate] best accuracy performence has been updated: 0.78125 --> 0.80000
[Evaluate] best accuracy performence has been updated: 0.80000 --> 0.81250
[Evaluate] best accuracy performence has been updated: 0.81250 --> 0.81875
[Evaluate] best accuracy performence has been updated: 0.81875 --> 0.82500
[Train] epoch: 50/1000, loss: 0.6558495759963989
[Train] epoch: 100/1000, loss: 0.5948771238327026
[Train] epoch: 150/1000, loss: 0.5388158559799194
[Train] epoch: 200/1000, loss: 0.5058477520942688
[Train] epoch: 250/1000, loss: 0.4894803464412689
[Train] epoch: 300/1000, loss: 0.4813789427280426
[Train] epoch: 350/1000, loss: 0.47720932960510254
[Train] epoch: 400/1000, loss: 0.47499004006385803
[Train] epoch: 450/1000, loss: 0.4737810492515564
[Train] epoch: 500/1000, loss: 0.4731082022190094
[Train] epoch: 550/1000, loss: 0.47272247076034546
[Train] epoch: 600/1000, loss: 0.4724907875061035
[Train] epoch: 650/1000, loss: 0.4723418354988098
[Train] epoch: 700/1000, loss: 0.4722374379634857
[Train] epoch: 750/1000, loss: 0.47215747833251953
[Train] epoch: 800/1000, loss: 0.4720911979675293
[Train] epoch: 850/1000, loss: 0.47203296422958374
[Train] epoch: 900/1000, loss: 0.4719797670841217
[Train] epoch: 950/1000, loss: 0.4719299376010895

 将训练过程中训练集与验证集的准确率变化情况进行可视化处理:

# 可视化观察训练集与验证集的指标变化情况
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    epochs = [i for i in range(len(runner.train_scores))]
 
    plt.subplot(1, 2, 1)
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
 
    plt.subplot(1, 2, 2)
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.savefig(fig_name)
    plt.show()
 
plot(runner, 'fw-acc.pdf')

 

 

4.3.4性能评价

使用测试数据对训练完成后的最优模型进行评价,观察模型在测试集上的准确率以及loss情况。

# 模型评价
runner.load_model("best_model.pdparams")
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

运行结果为:

[Test] score/loss: 0.7600/0.4883

 模型在测试集上取得了较高的准确率。

 4.3.5思考题

自定义梯度计算和自动梯度计算从计算性能、计算结果等多方面比较,谈谈自己的看法。

自定义梯度计算:由于参数选择很随意,且权重是随机初始化的,所以拟合效果不好

自动梯度计算:Tensor是这个pytorch的自动求导部分的核心类,如果将其属性.requires_grad=True,它将开始追踪(track) 在该tensor上的所有操作,从而实现利用链式法则进行的梯度传播。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。

自动梯度计算的速度是快于自定义梯度计算的

参考:

(3条消息) PyTorch自动计算梯度_Chris_34的博客-CSDN博客_pytorch自定义梯度计算

4.4优化问题

通过实践来发现神经网络模型的优化问题,并思考如何改进。

4.4.1参数初始化

实现一个神经网络前,需要先初始化模型参数。如果对每一层的权重和偏置都用0初始化,那么通过第一遍前向计算,所有隐藏层神经元的激活值都相同;在反向传播时,所有权重的更新也都相同,这样会导致隐藏层神经元没有差异性,出现对称权重现象

将模型参数全都初始化为0,看实验结果。这里重新定义了一个类TwoLayerNet_Zeros,两个线性层的参数全都初始化为0。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torch.nn.functional as F
 
from nndl2.dataset import make_moons
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
 
class Model_MLP_L2_V4(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Model_MLP_L2_V4, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
 
        self.fc2 = nn.Linear(hidden_size, output_size)
 
        self.act_fn = F.sigmoid
 
    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs)
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        return a2

月亮数据集

import torch
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
         axis=1
    )
    y = torch.cat(
        [torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
    )
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    if noise is not None:
        X += np.random.normal(0.0, noise, X.shape)
 
    return X, y
def print_weights(runner):
    print('The weights of the Layers:')
    for item in runner.model.named_parameters():
        print(item)
    for _, param in enumerate(runner.model.named_parameters()):
        print(param)

 使用Runner类训练模型:

# 设置模型
input_size = 2
hidden_size = 5
output_size = 1
model = Model_MLP_L2_V4(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
 
# 设置损失函数
loss_fn = F.binary_cross_entropy
 
# 设置优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.2)
 
# 设置评价指标
metric = accuracy
 
# 其他参数
epoch = 2000
saved_path = 'best_model.pdparams'
# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2_2(model, optimizer, metric, loss_fn)
 
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=5, log_epochs=50, save_path="best_model.pdparams", custom_print_log=print_weights)

 结果:

The weights of the Layers:
('fc1.weight', Parameter containing:
tensor([[ 0.4618, -0.2339],
        [-0.5633,  0.3300],
        [-0.6991, -0.2421],
        [ 0.1939, -0.0767],
        [-0.0565,  0.4028]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5646, 0.1304, 0.3827, 0.0918], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0198,  0.0295, -0.1418,  0.4028, -0.2293]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3413], requires_grad=True))
('fc1.weight', Parameter containing:
tensor([[ 0.4618, -0.2339],
        [-0.5633,  0.3300],
        [-0.6991, -0.2421],
        [ 0.1939, -0.0767],
        [-0.0565,  0.4028]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5646, 0.1304, 0.3827, 0.0918], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0198,  0.0295, -0.1418,  0.4028, -0.2293]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3413], requires_grad=True))
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.41250
[Train] epoch: 0/5, loss: 0.6785968542098999
The weights of the Layers:
('fc1.weight', Parameter containing:
tensor([[ 0.4620, -0.2341],
        [-0.5630,  0.3297],
        [-0.7005, -0.2408],
        [ 0.1988, -0.0802],
        [-0.0596,  0.4048]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5647, 0.1303, 0.3831, 0.0914], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0312,  0.0240, -0.1446,  0.4098, -0.2303]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3347], requires_grad=True))
('fc1.weight', Parameter containing:
tensor([[ 0.4620, -0.2341],
        [-0.5630,  0.3297],
        [-0.7005, -0.2408],
        [ 0.1988, -0.0802],
        [-0.0596,  0.4048]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5647, 0.1303, 0.3831, 0.0914], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0312,  0.0240, -0.1446,  0.4098, -0.2303]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3347], requires_grad=True))
The weights of the Layers:
('fc1.weight', Parameter containing:
tensor([[ 0.4623, -0.2343],
        [-0.5628,  0.3296],
        [-0.7020, -0.2395],
        [ 0.2036, -0.0839],
        [-0.0626,  0.4068]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5647, 0.1302, 0.3834, 0.0910], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0421,  0.0181, -0.1477,  0.4166, -0.2316]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3288], requires_grad=True))
('fc1.weight', Parameter containing:
tensor([[ 0.4623, -0.2343],
        [-0.5628,  0.3296],
        [-0.7020, -0.2395],
        [ 0.2036, -0.0839],
        [-0.0626,  0.4068]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5647, 0.1302, 0.3834, 0.0910], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0421,  0.0181, -0.1477,  0.4166, -0.2316]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3288], requires_grad=True))
The weights of the Layers:
('fc1.weight', Parameter containing:
tensor([[ 0.4627, -0.2347],
        [-0.5626,  0.3294],
        [-0.7034, -0.2383],
        [ 0.2085, -0.0876],
        [-0.0656,  0.4088]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5648, 0.1301, 0.3836, 0.0906], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0527,  0.0120, -0.1511,  0.4231, -0.2333]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3234], requires_grad=True))
('fc1.weight', Parameter containing:
tensor([[ 0.4627, -0.2347],
        [-0.5626,  0.3294],
        [-0.7034, -0.2383],
        [ 0.2085, -0.0876],
        [-0.0656,  0.4088]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5648, 0.1301, 0.3836, 0.0906], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0527,  0.0120, -0.1511,  0.4231, -0.2333]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3234], requires_grad=True))
The weights of the Layers:
('fc1.weight', Parameter containing:
tensor([[ 0.4633, -0.2352],
        [-0.5624,  0.3293],
        [-0.7048, -0.2369],
        [ 0.2135, -0.0914],
        [-0.0686,  0.4108]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5648, 0.1301, 0.3838, 0.0902], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0630,  0.0056, -0.1547,  0.4293, -0.2353]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3185], requires_grad=True))
('fc1.weight', Parameter containing:
tensor([[ 0.4633, -0.2352],
        [-0.5624,  0.3293],
        [-0.7048, -0.2369],
        [ 0.2135, -0.0914],
        [-0.0686,  0.4108]], requires_grad=True))
('fc1.bias', Parameter containing:
tensor([0.2812, 0.5648, 0.1301, 0.3838, 0.0902], requires_grad=True))
('fc2.weight', Parameter containing:
tensor([[ 0.0630,  0.0056, -0.1547,  0.4293, -0.2353]], requires_grad=True))
('fc2.bias', Parameter containing:
tensor([-0.3185], requires_grad=True))

 可视化训练和验证集上的主准确率和loss变化:

plot(runner, "fw-zero.pdf")

 

 

从输出结果看,二分类准确率为50%左右,说明模型没有学到任何内容。

为了避免对称权重现象,可以使用高斯分布或均匀分布初始化神经网络的参数。

高斯分布和均匀分布采样的实现和可视化代码如下:

# 使用'torch.normal'实现高斯分布采样,其中'mean'为高斯分布的均值,'std'为高斯分布的标准差,'shape'为输出形状
gausian_weights = torch.normal(mean=0.0, std=1.0, size=[10000])
# 使用'torch.uniform'实现在[min,max)范围内的均匀分布采样,其中'shape'为输出形状
uniform_weights = torch.Tensor(10000)
uniform_weights.uniform_(-1,1)
print(uniform_weights)
# 绘制两种参数分布
plt.figure()
plt.subplot(1,2,1)
plt.title('Gausian Distribution')
plt.hist(gausian_weights, bins=200, density=True, color='#f19ec2')
plt.subplot(1,2,2)
plt.title('Uniform Distribution')
plt.hist(uniform_weights, bins=200, density=True, color='#e4007f')
plt.savefig('fw-gausian-uniform.pdf')
plt.show()

 

 

4.4.2梯度消失问题

在神经网络的构建过程中,随着网络层数的增加,理论上网络的拟合能力也应该是越来越好的。但是随着网络变深,参数学习更加困难,容易出现梯度消失问题。

由于Sigmoid型函数的饱和性,饱和区的导数更接近于0,误差经过每一层传递都会不断衰减。当网络层数很深时,梯度就会不停衰减,甚至消失,使得整个网络很难训练,这就是所谓的梯度消失问题。
在深度神经网络中,减轻梯度消失问题的方法有很多种,一种简单有效的方式就是使用导数比较大的激活函数,如:ReLU。
通过实验观察前馈神经网络的梯度消失现象和改进方法。

模型构建

定义一个前馈神经网络,包含4个隐藏层和1个输出层,通过传入的参数指定激活函数。

# 定义多层前馈神经网络
class Model_MLP_L5(nn.Module):
    def __init__(self, input_size, output_size, act='sigmoid', w_init=torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.01)), b_init=torch.tensor(1.0)):
        super(Model_MLP_L5, self).__init__()
        self.fc1 = torch.nn.Linear(input_size, 3)
        self.fc2 = torch.nn.Linear(3, 3)
        self.fc3 = torch.nn.Linear(3, 3)
        self.fc4 = torch.nn.Linear(3, 3)
        self.fc5 = torch.nn.Linear(3, output_size)
        # 定义网络使用的激活函数
        if act == 'sigmoid':
            self.act = F.sigmoid
        elif act == 'relu':
            self.act = F.relu
        elif act == 'lrelu':
            self.act = F.leaky_relu
        else:
            raise ValueError("Please enter sigmoid relu or lrelu!")
        # 初始化线性层权重和偏置参数
        self.init_weights(w_init, b_init)
 
    # 初始化线性层权重和偏置参数
    def init_weights(self, w_init, b_init):
        # 使用'named_sublayers'遍历所有网络层
        for n, m in self.named_parameters():
            # 如果是线性层,则使用指定方式进行参数初始化
            if isinstance(m, nn.Linear):
                w_init(m.weight)
                b_init(m.bias)
 
    def forward(self, inputs):
        outputs = self.fc1(inputs)
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        outputs = self.act(outputs)
        outputs = self.fc3(outputs)
        outputs = self.act(outputs)
        outputs = self.fc4(outputs)
        outputs = self.act(outputs)
        outputs = self.fc5(outputs)
        outputs = F.sigmoid(outputs)
        return outputs

使用Sigmoid型函数进行训练

使用Sigmoid型函数作为激活函数,为了便于观察梯度消失现象,只进行一轮网络优化。

def print_grads(runner):
    # 打印每一层的权重的模
    print('The gradient of the Layers:')
    for name, item in runner.model.named_parameters():
        if(len(item.size())==2):
             print(name, torch.norm(input=item, p=2))
torch.manual_seed(102)
# 学习率大小
lr = 0.01
 
# 定义网络,激活函数使用sigmoid
model = Model_MLP_L5(input_size=2, output_size=1, act='sigmoid')
 
# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr)
 
# 定义损失函数,使用交叉熵损失函数
loss_fn = F.binary_cross_entropy
 
# 定义评价指标
metric = accuracy
 
# 指定梯度打印函数
custom_print_log = print_grads

 实例化Runner类,并传入训练配置。

runner = RunnerV2_2(model, optimizer, metric, loss_fn)

模型训练,打印网络每层梯度值的ℓ2范数。

# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev],
            num_epochs=1, log_epochs=None,
            save_path="best_model.pdparams",
            custom_print_log=custom_print_log)

运行结果

The gradient of the Layers:
fc1.weight tensor(1.0447, grad_fn=<NormBackward1>)
fc2.weight tensor(1.2803, grad_fn=<NormBackward1>)
fc3.weight tensor(0.8694, grad_fn=<NormBackward1>)
fc4.weight tensor(1.0071, grad_fn=<NormBackward1>)
fc5.weight tensor(0.5389, grad_fn=<NormBackward1>)
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.53125

观察实验结果可以发现,梯度经过神经元每一层的传递都会不断衰减,当传递到第一层时,梯度几乎完全消失。

使用ReLU函数进行模型训练

torch.manual_seed(102)
lr = 0.01  # 学习率大小
 
# 定义网络,激活函数使用relu
model =Model_MLP_L5(input_size=2, output_size=1, act='relu')
 
# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr)
 
# 定义损失函数
# 定义损失函数,这里使用交叉熵损失函数
loss_fn = F.binary_cross_entropy
 
# 定义评估指标
metric = accuracy
 
# 实例化Runner
runner = RunnerV2_2(model, optimizer, metric, loss_fn)
 
# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev],
            num_epochs=1, log_epochs=None,
            save_path="best_model.pdparams",
            custom_print_log=custom_print_log)

运行结果 

The gradient of the Layers:
fc1.weight tensor(0.8176, grad_fn=<NormBackward1>)
fc2.weight tensor(0.9802, grad_fn=<NormBackward1>)
fc3.weight tensor(0.9874, grad_fn=<NormBackward1>)
fc4.weight tensor(1.0451, grad_fn=<NormBackward1>)
fc5.weight tensor(0.4850, grad_fn=<NormBackward1>)
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.53125

4.4.3死亡Relu问题

ReLU激活函数可以一定程度上改善梯度消失问题,但是在某些情况下容易出现死亡ReLU问题,使得网络难以训练。

这是由于当x<0x<0时,ReLU函数的输出恒为0。在训练过程中,如果参数在一次不恰当的更新后,某个ReLU神经元在所有训练数据上都不能被激活(即输出为0),那么这个神经元自身参数的梯度永远都会是0,在以后的训练过程中永远都不能被激活。

一种简单有效的优化方式就是将激活函数更换为Leaky ReLU、ELU等ReLU的变种。
 

在优化方面,相比于Sigmoid型函数的两端饱和,ReLU函数为左饱和函数,且在x > 0时导数为1,在一定程度上缓解了神经网络的梯度消失问题,加速梯度下降的收敛速度。——来源于邱锡鹏老师的《神经网络与深度学习》 

如果一个 R e L U ReLUReLU 神经元由于被不恰当地初始化而恒等于 0(这时不是模型参数的问题),或是其对应的参数在训练过程中由于大幅度的更新而接近于 0(这时在下一样本的计算中该神经元的值就会趋于为 0,随着而来的是权重的梯度为 0,权重无法更新,导致该神经元的值恒为 0),那么这个神经元将永远处于死亡状态。这就是“死亡” R e L U ReLUReLU。这就像是永恒的,无法恢复的大脑损伤。有时,你将整个训练数据集放入一个训练过的网络中进行前向计算,你可能会发现大部分(如 40 % 40\%40% )的神经元的值一直恒为零。

所以,在使用 Relu 时,要警惕死亡 Relu,这些神经元在整个训练数据集中任一样本中都不会被激活,而是处于死亡状态。神经元在训练过程中的“死亡”,通常是学习率过大造成的。

 

当权重参数变为负值时,输入网络的正值会和权重相乘后也会变为负值,负值通过ReLu后就会输出0;如果在后期有机会被更新为正值也不会出现大问题,但是当relu函数输出值为0时,relu的导数也为0,因此会导致后边Δω一直为0,进而导致ω一直不会被更新,因此会导致这个神经元永久性死亡(一直输出0)

如此看来,尽管 ReLU 解决了因激活函数导数的绝对值小于 1,在反向传播连乘的过程中迅速变小消失至 0 的问题,但由于它在输入为负的区段导数恒为零,而使得它对异常值特别敏感。这种异常值可能会使 ReLU 永久关闭,而杀死神经元。

使用ReLU进行模型训练

# 定义网络,并使用较大的负值来初始化偏置
model = Model_MLP_L5(input_size=2, output_size=1, act='relu', b_init=torch.tensor(-0.8))

实例化Runner类,启动模型训练,打印网络每层梯度值的ℓ2ℓ2范数。

# 实例化Runner类
runner = RunnerV2_2(model, optimizer, metric, loss_fn)
 
# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev],
            num_epochs=1, log_epochs=0,
            save_path="best_model.pdparams",
            custom_print_log=custom_print_log)

 运行结果

The gradient of the Layers:
linear_14 0.0
linear_15 0.0
linear_16 0.0
linear_17 0.0
linear_18 0.0
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.53750

从输出结果可以发现,使用 ReLU 作为激活函数,当满足条件时,会发生死亡ReLU问题,网络训练过程中 ReLU 神经元的梯度始终为0,参数无法更新。

使用Leaky ReLU进行模型训练

将激活函数更换为Leaky ReLU进行模型训练,观察梯度情况。

# 重新定义网络,使用Leaky ReLU激活函数
model =  Model_MLP_L5(input_size=2, output_size=1, act='lrelu', b_init=torch.tensor(-0.8))
 
# 实例化Runner类
runner = RunnerV2_2(model, optimizer, metric, loss_fn)
 
# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev],
            num_epochs=1, log_epochps=None,
            save_path="best_model.pdparams",
            custom_print_log=custom_print_log)

输出结果

The gradient of the Layers:
fc1.weight tensor(0.7548, grad_fn=<NormBackward1>)
fc2.weight tensor(1.1612, grad_fn=<NormBackward1>)
fc3.weight tensor(1.0495, grad_fn=<NormBackward1>)
fc4.weight tensor(1.0805, grad_fn=<NormBackward1>)
fc5.weight tensor(0.5799, grad_fn=<NormBackward1>)
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.4965
[Train] epoch: 0/1, loss: 0.7061845328474692
 
Process finished with exit code 0

总结

通过本次实验,学习了torch.nn.Module的使用,以及自定义梯度计算和自动梯度计算之间的区别。自己对这部分知识掌握比较欠缺,通过本次实验对知识有了进一步了解但还有不足,在以后的学习中应多注意原理的理解,提高编程能力!

参考:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_HBU_David的博客-CSDN博客

NNDL 实验4(上) - HBU_DAVID - 博客园 (cnblogs.com)

对ReLU激活函数神经元死亡现象的理解_今天你ac了吗的博客-CSDN博客_relu神经元死亡

前馈神经网络实验(er)_白小码i的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值