- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
本次学习使用PyTorch构建和训练CNN网络进行彩色图片识别
欢迎收藏 + 关注
目录
一、前期准备
1. 设置GPU
import sys
sys.path.append(r'D:\Software\PyTorch') ## 指向安装 PyTorch 的目录
import torch
print(torch.__version__)
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.导入数据
这里使用dataset下载CIFAR10数据集,并划分好训练集与测试集。使用dataloader加载数据,并设置好基本的batch_size
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True) #download如果本地指定的 root 路径下没有找到数据集文件,就自动从官方服务器下载该数据集。
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
#训练集 train_ds 有 50,000 张图片,测试集 test_ds 有 10,000 张。
# 将图片转换为张量 torch.Tensor 格式,方便后续送入神经网络
# 创建数据加载器:
batch_size = 32 #每次从数据集中抽取32个样本作为一个批次(常用默认值)
# 约 1563 个 batch(50000 ÷ 32 ≈ 1563)
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True) #在每个训练周期开始时,打乱训练数据的顺序,仅在 train_dl 中使用
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
# PyTorch 数据检查:取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
#torch.Size([32, 3, 32, 32]) 每张图片大小为 32×32 像素,3 通道(RGB)
3.数据可视化
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
# 可视化显示一个批次中的前20张图片
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]): #遍历前 20 张图片
# 进行轴变换
npimg = imgs.numpy().transpose((1, 2, 0))
#PyTorch 图像张量格式为 [C, H, W](通道、高度、宽度)。Matplotlib 需要 [H, W, C]。因此通过 .transpose((1,2,0)) 调整维度顺序。
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg, cmap=plt.cm.binary)
#plt.imshow(npimg[:, :, 0], cmap=plt.cm.binary) #展示为黑白
plt.axis('off')

transpose((1, 2, 0))详解:
● 作用是对NumPy数组进行轴变换,transpose函数的参数是一个元组,定义了新轴的顺序。原始PyTorch张量通常是以(C, H, W)的格式存储的,其中:
○ C是通道数(例如,RGB图像有3个通道)。
○ H是图像的高度。
○ W是图像的宽度。
● transpose((1, 2, 0))将轴的顺序从(C, H, W)转换为(H, W, C),这使得数据格式更适合可视化和处理。
二、构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
torch.nn.Conv2d()详解 函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
二维卷积层——提取输入图像的局部特征(如边缘、纹理、形状),并生成多个特征图。
关键参数说明:
● in_channels ( int ) – 输入图像中的通道数;
● out_channels ( int ) – 卷积产生的通道数;
● kernel_size ( int or tuple ) – 卷积核的大小;
● stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1;
● padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0;
● dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1;
● groups(int,optional):将输入通道分组成多个子组,每个子组使用一组卷积核来处理。默认值为 1,表示不进行分组卷积;
● padding_mode (str, optional) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros';
● bias=True 是否使用偏置。
torch.nn.Linear()详解 函数原型:
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
全连接层(Fully Connected Layer),也称 线性层(Linear Layer)。把提取到的特征转化为具体的预测输出,比如疾病分类结果、概率分布。
关键参数说明:
● in_features:每个输入样本的大小;
● out_features:每个输出样本的大小。
torch.nn.MaxPool2d()详解 函数原型:
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
二维最大池化层(Max Pooling Layer),是 CNN(卷积神经网络)中用于下采样(subsampling)或特征压缩的层。每次取一个小窗口(如 2×2)在窗口中取 最大值,从而减少空间分辨率(尺寸),但保留最显著的特征。
关键参数说明:
● kernel_size:最大的窗口大小
● stride:窗口的步幅,默认值为kernel_size
● padding:填充值,默认为0
● dilation:控制窗口中元素步幅的参数
关于卷积层、池化层的计算:
下面的网络数据shape变化过程为:
3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(3, 64, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(kernel_size=2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool3 = nn.MaxPool2d(kernel_size=2)
# 分类网络
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
# Flatten 展平
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载并打印模型
from torchinfo import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model)
================================================================= Layer (type:depth-idx) Param # ================================================================= Model -- ├─Conv2d: 1-1 1,792 ├─MaxPool2d: 1-2 -- ├─Conv2d: 1-3 36,928 ├─MaxPool2d: 1-4 -- ├─Conv2d: 1-5 73,856 ├─MaxPool2d: 1-6 -- ├─Linear: 1-7 131,328 ├─Linear: 1-8 2,570 ================================================================= Total params: 246,474 Trainable params: 246,474 Non-trainable params: 0 =================================================================
三、训练模型
1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate) #定义优化器
2. 编写训练函数
在使用 PyTorch 训练神经网络时,optimizer.zero_grad()、loss.backward() 和 optimizer.step() 是训练过程中三步关键操作,分别负责 清零梯度、反向传播、更新权重。
🔺optimizer.zero_grad():清空模型参数的梯度缓存。
在 PyTorch 中,梯度是累加的。如果不手动清除,上一个 batch 的梯度会和当前 batch 的梯度叠加,导致参数更新错误。
🔺 loss.backward():执行反向传播,自动计算每个参数的梯度。
会自动计算所有可学习参数对损失函数的导数(梯度),这些梯度存储在每个参数的 .grad 属性中,用于后续优化器更新参数。
🔺 optimizer.step():根据当前计算得到的梯度,更新模型的参数(即进行一次优化步骤)
● 调用的是优化器中定义的算法,比如 SGD、Adam 等
● 它会对每个参数执行如下操作(以 SGD 为例)
param.data = param.data - learning_rate * param.grad
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3. 编写测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4. 正式训练
model.train():是训练模式的设置方法,调用后模型会处于 训练模式。
👉 影响:
● Dropout 层:在训练时启用(随机丢弃部分神经元)
● BatchNorm 层:使用当前 batch 的均值和方差进行标准化,并更新其内部的运行均值和方差
model.eval():是评估模式(推理模式)的设置方法,调用后模型会处于 评估/推理模式。
👉 影响:
● Dropout 层:关闭(不再随机丢弃神经元)
● BatchNorm 层:使用训练时记录的均值和方差,不再更新
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
四、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

1338

被折叠的 条评论
为什么被折叠?



