第P2周:CIFAR10彩色图片识别

第P2周:CIFAR10彩色图片识别

📌第P2周:彩色图片识别📌

  • 难度:小白入门⭐

  • 语言:Python3、Pytorch

🍺 要求:

  1. 学习如何编写一个完整的深度学习程序

  2. 手动推导卷积层与池化层的计算过程

🔔 本次的重点在于学会构建CNN网络

🏡 我的环境:

  • 语言环境:Python3.8

  • 编译器:jupyter notebook

  • 深度学习环境:Pytorch

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cuda')

2. 导入数据

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

# 如已经下载过 
# Files already downloaded and verified
# Files already downloaded and verified

image-20240412165257382

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))

print("img shape: ", imgs.shape)
print("labels shape: ", labels.shape)

image-20240412165409377

3. 数据可视化

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

image-20240412170321267

matplot.lib 简单使用

# 1 通过figure创建画布
plt.figure(num=1, figsize=(10,10),dpi=200,facecolor='gray',edgecolor=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大小宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值